Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 3 of 3

Publication Record


Forward problem of electrocardiography: is it solved?
Bear LR, Cheng LK, LeGrice IJ, Sands GB, Lever NA, Paterson DJ, Smaill BH
(2015) Circ Arrhythm Electrophysiol 8: 677-84
MeSH Terms: Action Potentials, Animals, Body Surface Potential Mapping, Electrocardiography, Epicardial Mapping, Heart Conduction System, Models, Animal, Models, Cardiovascular, Pericardium, Predictive Value of Tests, Reproducibility of Results, Signal Processing, Computer-Assisted, Swine
Show Abstract · Added April 26, 2016
BACKGROUND - The relationship between epicardial and body surface potentials defines the forward problem of electrocardiography. A robust formulation of the forward problem is instrumental to solving the inverse problem, in which epicardial potentials are computed from known body surface potentials. Here, the accuracy of different forward models has been evaluated experimentally.
METHODS AND RESULTS - Body surface and epicardial potentials were recorded simultaneously in anesthetized closed-chest pigs (n=5) during sinus rhythm, and epicardial and endocardial ventricular pacing (65 records in total). Body surface potentials were simulated from epicardial recordings using experiment-specific volume conductor models constructed from magnetic resonance imaging. Results for homogeneous (isotropic electric properties) and inhomogeneous (incorporating lungs, anisotropic skeletal muscle, and subcutaneous fat) forward models were compared with measured body surface potentials. Correlation coefficients were 0.85±0.08 across all animals and activation sequences with no significant difference between homogeneous and inhomogeneous solutions (P=0.85). Despite this, there was considerable variance between simulated and measured body surface potential distributions. Differences between the body surface potential extrema predicted with homogeneous forward models were 55% to 78% greater than observed (P<0.05) and attenuation of potentials adjacent to extrema were 10% to 171% greater (P<0.03). The length and orientation of the vector between potential extrema were also significantly different. Inclusion of inhomogeneous electric properties in the forward model reduced, but did not eliminate these differences.
CONCLUSIONS - These results demonstrate that homogeneous volume conductor models introduce substantial spatial inaccuracies in forward problem solutions. This probably affects the precision of inverse reconstructions of cardiac potentials, in which this assumption is made.
© 2015 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Electrophysiologic substrate in congenital Long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI).
Vijayakumar R, Silva JNA, Desouza KA, Abraham RL, Strom M, Sacher F, Van Hare GF, Haïssaguerre M, Roden DM, Rudy Y
(2014) Circulation 130: 1936-1943
MeSH Terms: Adolescent, Adult, Child, Cohort Studies, Electrocardiography, Epicardial Mapping, Female, Humans, Long QT Syndrome, Male, Middle Aged, Young Adult
Show Abstract · Added March 24, 2020
BACKGROUND - Congenital Long QT syndrome (LQTS) is an arrhythmogenic disorder that causes syncope and sudden death. Although its genetic basis has become well-understood, the mechanisms whereby mutations translate to arrhythmia susceptibility in the in situ human heart have not been fully defined. We used noninvasive ECG imaging to map the cardiac electrophysiological substrate and examine whether LQTS patients display regional heterogeneities in repolarization, a substrate that promotes arrhythmogenesis.
METHODS AND RESULTS - Twenty-five subjects (9 LQT1, 9 LQT2, 5 LQT3, and 2 LQT5) with genotype and phenotype positive LQTS underwent ECG imaging. Seven normal subjects provided control. Epicardial maps of activation, recovery times, activation-recovery intervals, and repolarization dispersion were constructed. Activation was normal in all patients. However, recovery times and activation-recovery intervals were prolonged relative to control, indicating delayed repolarization and abnormally long action potential duration (312±30 ms versus 235±21 ms in control). Activation-recovery interval prolongation was spatially heterogeneous, with repolarization gradients much steeper than control (119±19 ms/cm versus 2.0±2.0 ms/cm). There was variability in steepness and distribution of repolarization gradients between and within LQTS types. Repolarization gradients were steeper in symptomatic patients (130±27 ms/cm in 12 symptomatic patients versus 98±19 ms/cm in 13 asymptomatic patients; P<0.05).
CONCLUSIONS - LQTS patients display regions with steep repolarization dispersion caused by localized action potential duration prolongation. This defines a substrate for reentrant arrhythmias, not detectable by surface ECG. Steeper dispersion in symptomatic patients suggests a possible role for ECG imaging in risk stratification.
© 2014 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Diastolic field stimulation: the role of shock duration in epicardial activation and propagation.
Woods MC, Uzelac I, Holcomb MR, Wikswo JP, Sidorov VY
(2013) Biophys J 105: 523-32
MeSH Terms: Animals, Diastole, Electric Countershock, Epicardial Mapping, In Vitro Techniques, Models, Cardiovascular, Myocardial Perfusion Imaging, Pericardium, Rabbits, Time Factors
Show Abstract · Added March 7, 2014
Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1-0.2-ms shocks produced slow and heterogeneous activation. During 0.8-1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3-8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.
Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
10 MeSH Terms