Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 47

Publication Record

Connections

Interplay between ER Ca Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca Entry.
Nelson HA, Leech CA, Kopp RF, Roe MW
(2018) Int J Mol Sci 19:
MeSH Terms: 3T3 Cells, Animals, Calcium, Calcium Signaling, Fluorescence Resonance Energy Transfer, Green Fluorescent Proteins, Humans, Membrane Microdomains, Mice, Neoplasm Proteins, ORAI1 Protein, Protein Binding, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca-binding protein, with Ca-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Nanoscale architecture of the contractile ring.
McDonald NA, Lind AL, Smith SE, Li R, Gould KL
(2017) Elife 6:
MeSH Terms: Cell Cycle Proteins, Cell Division, Cell Membrane, Cytoplasm, Fluorescence Resonance Energy Transfer, Macromolecular Substances, Microscopy, Fluorescence, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 14, 2018
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca sensing.
Yang J, Cumberbatch D, Centanni S, Shi SQ, Winder D, Webb D, Johnson CH
(2016) Nat Commun 7: 13268
MeSH Terms: Animals, Batrachoidiformes, Calcium, Fluorescence Resonance Energy Transfer, HEK293 Cells, HeLa Cells, Humans, Luciferases, Luminescence, Luminescent Measurements, Microscopy, Fluorescence, Optogenetics
Show Abstract · Added March 26, 2019
Optogenetic techniques allow intracellular manipulation of Ca by illumination of light-absorbing probe molecules such as channelrhodopsins and melanopsins. The consequences of optogenetic stimulation would optimally be recorded by non-invasive optical methods. However, most current optical methods for monitoring Ca levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence. Using a new bright luciferase, we here develop a genetically encoded Ca sensor that is ratiometric by virtue of bioluminescence resonance energy transfer (BRET). This sensor has a large dynamic range and partners optimally with optogenetic probes. Ca fluxes that are elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channelrhodopsin are quantified and imaged with the BRET Ca sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.
0 Communities
1 Members
0 Resources
MeSH Terms
Hydrolytic charge-reversal of PEGylated polyplexes enhances intracellular un-packaging and activity of siRNA.
Werfel TA, Swain C, Nelson CE, Kilchrist KV, Evans BC, Miteva M, Duvall CL
(2016) J Biomed Mater Res A 104: 917-27
MeSH Terms: Amines, Carboxylic Acids, Cell Line, Tumor, Cell Survival, Fluorescence Resonance Energy Transfer, Hemolysis, Humans, Hydrolysis, Methacrylates, Microscopy, Confocal, Nanostructures, Polyethylene Glycols, RNA Interference, RNA, Small Interfering
Show Abstract · Added March 14, 2018
Hydrolytically degrading nano-polyplexes (HDG-NPs) that reverse charge through conversion of tertiary amines to carboxylic acids were investigated to improve intracellular un-packaging of siRNA and target gene silencing compared to a non-degradable analog (non-HDG-NPs). Both NP types comprised reversible addition-fragmentation chain-transfer (RAFT) synthesized diblock copolymers of a poly(ethylene glycol) (PEG) corona-forming block and a cationic block for nucleic acid packaging that incorporated butyl methacrylate (BMA) and either dimethylaminoethyl methacrylate (DMAEMA, non-HDG-NPs) or dimethylaminoethyl acrylate (DMAEA, HDG-NPs). HDG-NPs decreased significantly in size and released significantly more siRNA (∼40%) than non-HDG-NPs after 24 h in aqueous solution. While both HDG-NPs and non-HDG-NPs had comparable uptake and cytotoxicity up to 150 nM siRNA doses, HDG-NPs achieved significantly higher target gene silencing of the model gene luciferase in vitro. High resolution FRET confocal microscopy was used to monitor the intracellular un-packaging of siRNA. Non-HDG-NPs had significantly higher FRET efficiency than HDG-NPs, indicating that siRNA delivered from HDG-NPs was more fully un-packaged and therefore had improved intracellular bioavailability.
© 2016 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Extracellular rigidity sensing by talin isoform-specific mechanical linkages.
Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, Klingner C, Sabass B, Zent R, Rief M, Grashoff C
(2015) Nat Cell Biol 17: 1597-606
MeSH Terms: Actin Cytoskeleton, Actins, Animals, Biosensing Techniques, Blotting, Western, Cell Adhesion, Cells, Cultured, Extracellular Matrix, Fibroblasts, Fluorescence Resonance Energy Transfer, Focal Adhesions, Luminescent Proteins, Mechanical Phenomena, Mice, Knockout, Mice, Transgenic, Microfilament Proteins, Microscopy, Confocal, Microscopy, Fluorescence, Optical Tweezers, Peptides, Protein Binding, Talin, Vinculin
Show Abstract · Added February 4, 2016
The ability of cells to adhere and sense differences in tissue stiffness is crucial for organ development and function. The central mechanisms by which adherent cells detect extracellular matrix compliance, however, are still unknown. Using two single-molecule-calibrated biosensors that allow the analysis of a previously inaccessible but physiologically highly relevant force regime in cells, we demonstrate that the integrin activator talin establishes mechanical linkages following cell adhesion, which are indispensable for cells to probe tissue stiffness. Talin linkages are exposed to a range of piconewton forces and bear, on average, 7-10 pN during cell adhesion depending on their association with F-actin and vinculin. Disruption of talin's mechanical engagement does not impair integrin activation and initial cell adhesion but prevents focal adhesion reinforcement and thus extracellular rigidity sensing. Intriguingly, talin mechanics are isoform specific so that expression of either talin-1 or talin-2 modulates extracellular rigidity sensing.
1 Communities
1 Members
0 Resources
23 MeSH Terms
Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.
Sevy AM, Jacobs TM, Crowe JE, Meiler J
(2015) PLoS Comput Biol 11: e1004300
MeSH Terms: Algorithms, Amino Acid Sequence, Binding Sites, Computer Simulation, Directed Molecular Evolution, Drug Design, Energy Transfer, Models, Chemical, Models, Molecular, Molecular Sequence Data, Protein Binding, Protein Engineering, Proteins, Sequence Analysis, Protein, Structure-Activity Relationship, Thermodynamics
Show Abstract · Added January 26, 2016
Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a 'single state' design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design "promiscuous", polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes.
1 Communities
3 Members
0 Resources
16 MeSH Terms
Ion/ion reactions with "onium" reagents: an approach for the gas-phase transfer of organic cations to multiply-charged anions.
Gilbert JD, Prentice BM, McLuckey SA
(2015) J Am Soc Mass Spectrom 26: 818-25
MeSH Terms: Alkylation, CME-Carbodiimide, Catalysis, Chelating Agents, Cross-Linking Reagents, Edetic Acid, Energy Transfer, Hot Temperature, Indicators and Reagents, Models, Molecular, Oligopeptides, Organophosphorus Compounds, Protein Conformation, Quaternary Ammonium Compounds, Spectrometry, Mass, Electrospray Ionization, Static Electricity, Sulfonium Compounds, Tandem Mass Spectrometry, Tetraethylammonium, Volatilization
Show Abstract · Added August 17, 2016
The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt.
Broussard JA, Rappaz B, Webb DJ, Brown CM
(2013) Nat Protoc 8: 265-81
MeSH Terms: Enzyme Activation, Fluorescence Polarization, Fluorescence Resonance Energy Transfer, Image Processing, Computer-Assisted, Microscopy, Models, Molecular, Optical Imaging, Photobleaching, Proto-Oncogene Proteins c-akt
Show Abstract · Added May 20, 2014
This protocol describes procedures for performing fluorescence resonance energy transfer (FRET) microscopy analysis by three different methods: acceptor photobleaching, sensitized emission and spectral imaging. We also discuss anisotropy and fluorescence lifetime imaging microscopy-based FRET techniques. By using the specific example of the FRET probe Akind (Akt indicator), which is a version of Akt modified such that FRET occurs when the probe is activated by phosphorylation, indicating Akt activation. The protocol provides a detailed step-by-step description of sample preparation, image acquisition and analysis, including control samples, image corrections and the generation of quantitative FRET/CFP ratio images for both sensitized emission and spectral imaging. The sample preparation takes 2 d, equipment setup takes 2-3 h and image acquisition and analysis take 6-8 h.
0 Communities
1 Members
0 Resources
9 MeSH Terms
pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.
Zhang Y, Xie Q, Robertson JB, Johnson CH
(2012) PLoS One 7: e43072
MeSH Terms: Cell Line, Cytoplasm, Cytosol, Energy Transfer, Fluorescence Resonance Energy Transfer, Fluorescent Dyes, HeLa Cells, Humans, Hydrogen-Ion Concentration, Luminescence, Luminescent Proteins, Saccharomyces cerevisiae, Sodium Fluoride, Time Factors
Show Abstract · Added February 12, 2015
We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Imaging protein complex formation in the autophagy pathway: analysis of the interaction of LC3 and Atg4B(C74A) in live cells using Förster resonance energy transfer and fluorescence recovery after photobleaching.
Kraft LJ, Kenworthy AK
(2012) J Biomed Opt 17: 011008
MeSH Terms: Animals, COS Cells, Cell Nucleus, Chlorocebus aethiops, Cysteine Endopeptidases, Cytoplasm, Fluorescence Recovery After Photobleaching, Fluorescence Resonance Energy Transfer, Green Fluorescent Proteins, Microscopy, Fluorescence, Microtubule-Associated Proteins, Models, Biological, Multiprotein Complexes, Single-Cell Analysis
Show Abstract · Added December 10, 2013
The protein microtubule-associated protein 1, light chain 3 (LC3) functions in autophagosome formation and plays a central role in the autophagy pathway. Previously, we found LC3 diffuses more slowly in cells than is expected for a freely diffusing monomer, suggesting it may constitutively associate with a macromolecular complex containing other protein components of the pathway. In the current study, we used Förster resonance energy transfer (FRET) microscopy and fluorescence recovery after photobleaching (FRAP) to investigate the interactions of LC3 with Atg4B(C74A), a catalytically inactive mutant of the cysteine protease involved in lipidation and de-lipidation of LC3, as a model system to probe protein complex formation in the autophagy pathway. We show Atg4B(C74A) is in FRET proximity with LC3 in both the cytoplasm and nucleus of living cells, consistent with previous biochemical evidence that suggests these proteins directly interact. In addition, overexpressed Atg4B(C74A) diffuses significantly more slowly than predicted based on its molecular weight, and its translational diffusion coefficient is significantly slowed upon coexpression with LC3 to match that of LC3 itself. Taken together, these results suggest Atg4B(C74A) and LC3 are contained within the same multiprotein complex and that this complex exists in both the cytoplasm and nucleoplasm of living cells.
0 Communities
1 Members
0 Resources
14 MeSH Terms