Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 140

Publication Record

Connections

Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease.
Musial TF, Molina-Campos E, Bean LA, Ybarra N, Borenstein R, Russo ML, Buss EW, Justus D, Neuman KM, Ayala GD, Mullen SA, Voskobiynyk Y, Tulisiak CT, Fels JA, Corbett NJ, Carballo G, Kennedy CD, Popovic J, Ramos-Franco J, Fill M, Pergande MR, Borgia JA, Corbett GT, Pahan K, Han Y, Chetkovich DM, Vassar RJ, Byrne RW, Matthew Oh M, Stoub TR, Remy S, Disterhoft JF, Nicholson DA
(2018) Neurobiol Learn Mem 154: 141-157
MeSH Terms: Action Potentials, Aging, Alzheimer Disease, Animals, CA1 Region, Hippocampal, Channelopathies, Disease Models, Animal, Endoplasmic Reticulum, Female, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Mice, Transgenic, Neuronal Plasticity, Pyramidal Cells
Show Abstract · Added April 2, 2019
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
14 MeSH Terms
TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion.
Vierra NC, Dickerson MT, Jordan KL, Dadi PK, Katdare KA, Altman MK, Milian SC, Jacobson DA
(2018) Mol Metab 9: 84-97
MeSH Terms: Animals, Calcium Signaling, Cells, Cultured, Cytoplasm, Endoplasmic Reticulum, Glucagon, Humans, Male, Mice, Mice, Inbred C57BL, Potassium Channels, Tandem Pore Domain, Somatostatin, Somatostatin-Secreting Cells
Show Abstract · Added February 7, 2018
OBJECTIVE - Single-cell RNA sequencing studies have revealed that the type-2 diabetes associated two-pore domain K (K2P) channel TALK-1 is abundantly expressed in somatostatin-secreting δ-cells. However, a physiological role for TALK-1 in δ-cells remains unknown. We previously determined that in β-cells, K flux through endoplasmic reticulum (ER)-localized TALK-1 channels enhances ER Ca leak, modulating Ca handling and insulin secretion. As glucose amplification of islet somatostatin release relies on Ca-induced Ca release (CICR) from the δ-cell ER, we investigated whether TALK-1 modulates δ-cell Ca handling and somatostatin secretion.
METHODS - To define the functions of islet δ-cell TALK-1 channels, we generated control and TALK-1 channel-deficient (TALK-1 KO) mice expressing fluorescent reporters specifically in δ- and α-cells to facilitate cell type identification. Using immunofluorescence, patch clamp electrophysiology, Ca imaging, and hormone secretion assays, we assessed how TALK-1 channel activity impacts δ- and α-cell function.
RESULTS - TALK-1 channels are expressed in both mouse and human δ-cells, where they modulate glucose-stimulated changes in cytosolic Ca and somatostatin secretion. Measurement of cytosolic Ca levels in response to membrane potential depolarization revealed enhanced CICR in TALK-1 KO δ-cells that could be abolished by depleting ER Ca with sarco/endoplasmic reticulum Ca ATPase (SERCA) inhibitors. Consistent with elevated somatostatin inhibitory tone, we observed significantly reduced glucagon secretion and α-cell Ca oscillations in TALK-1 KO islets, and found that blockade of α-cell somatostatin signaling with a somatostatin receptor 2 (SSTR2) antagonist restored glucagon secretion in TALK-1 KO islets.
CONCLUSIONS - These data indicate that TALK-1 reduces δ-cell cytosolic Ca elevations and somatostatin release by limiting δ-cell CICR, modulating the intraislet paracrine signaling mechanisms that control glucagon secretion.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Molecular physiology and pathophysiology of stromal interaction molecules.
Nelson HA, Roe MW
(2018) Exp Biol Med (Maywood) 243: 451-472
MeSH Terms: Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Endoplasmic Reticulum, Humans, Mice, Neoplasm Proteins, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Ca release from the endoplasmic reticulum is an important component of Ca signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca from the endoplasmic reticulum is coupled to the activation of store-operated Ca entry into cells. Store-operated Ca entry provides Ca for replenishing depleted endoplasmic reticulum Ca stores and a Ca signal that regulates Ca-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca stores following G protein-coupled receptor activation with the induction of store-operated Ca entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca concentration within the endoplasmic reticulum lumen and activators of Ca release-activated Ca channels. Emerging evidence indicates that in addition to their role in Ca release-activated Ca channel gating and store-operated Ca entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.
Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J
(2018) Sci Adv 4: e1701393
MeSH Terms: Amino Acid Sequence, Bacteriophages, Biocatalysis, Cyclin-Dependent Kinase 4, Endoplasmic Reticulum Stress, HEK293 Cells, Humans, Mutant Proteins, Mutation, Peptides, Proteolysis, Reproducibility of Results, Signal Transduction, Substrate Specificity, Tumor Suppressor Protein p53, Tumor Suppressor Proteins, Ubiquitin, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added March 24, 2018
E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Endoplasmic reticulum stress in the pathogenesis of fibrotic disease.
Kropski JA, Blackwell TS
(2018) J Clin Invest 128: 64-73
MeSH Terms: Animals, Apoptosis, Endoplasmic Reticulum Stress, Fibrosis, Humans, Inflammation, Macrophages, Molecular Chaperones, Myofibroblasts, Signal Transduction, Unfolded Protein Response
Show Abstract · Added March 21, 2018
Eukaryotic cells contain an elegant protein quality control system that is crucial in maintaining cellular homeostasis; however, dysfunction of this system results in endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Severe or prolonged ER stress is associated with the development of degenerative and fibrotic disorders in multiple organs, as evidenced by the identification of disease-causing mutations in epithelial-restricted genes that lead to protein misfolding or mistrafficking in familial fibrotic diseases. Emerging evidence implicates ER stress and UPR signaling in a variety of profibrotic mechanisms in individual cell types. In epithelial cells, ER stress can induce apoptosis, inflammatory signaling, and epithelial-mesenchymal transition. In other cell types, ER stress is linked to myofibroblast activation, macrophage polarization, and T cell differentiation. ER stress-targeted therapies have begun to emerge using approaches that range from global enhancement of chaperone function to selective targeting of activated ER stress sensors and other downstream mediators. As the complex regulatory mechanisms of this system are further clarified, there are opportunities to develop new disease-modifying therapeutic strategies in a wide range of chronic fibrotic diseases.
0 Communities
1 Members
0 Resources
11 MeSH Terms
TALK-1 channels control β cell endoplasmic reticulum Ca homeostasis.
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA
(2017) Sci Signal 10:
MeSH Terms: Animals, Calcium, Diabetes Mellitus, Endoplasmic Reticulum, HEK293 Cells, Homeostasis, Humans, Insulin-Secreting Cells, Mice, Mice, Knockout, Potassium Channels, Tandem Pore Domain
Show Abstract · Added November 13, 2017
Ca handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca homeostasis is determined by ion movements across the ER membrane, including K flux through K channels. We demonstrated that K flux through ER-localized TALK-1 channels facilitated Ca release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca and increased ER Ca concentrations, suggesting reduced ER Ca leak. These changes in Ca homeostasis were presumably due to TALK-1-mediated ER K flux, because we recorded K currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca stores. Reduced ER Ca content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca and suggest that TALK-1 may be a therapeutic target to reduce ER Ca handling defects in β cells during the pathogenesis of diabetes.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
11 MeSH Terms
A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal.
Copeland CA, Han B, Tiwari A, Austin ED, Loyd JE, West JD, Kenworthy AK
(2017) Mol Biol Cell 28: 3095-3111
MeSH Terms: Caveolae, Caveolin 1, Endocytosis, Endoplasmic Reticulum, Fibroblasts, Frameshift Mutation, Humans, Hypertension, Pulmonary, Mutation, Protein Transport
Show Abstract · Added April 2, 2019
Caveolin-1 (CAV1) is an essential component of caveolae and is implicated in numerous physiological processes. Recent studies have identified heterozygous mutations in the gene in patients with pulmonary arterial hypertension (PAH), but the mechanisms by which these mutations impact caveolae assembly and contribute to disease remain unclear. To address this question, we examined the consequences of a familial PAH-associated frameshift mutation in , P158PfsX22, on caveolae assembly and function. We show that C-terminus of the CAV1 P158 protein contains a functional ER-retention signal that inhibits ER exit and caveolae formation and accelerates CAV1 turnover in MEFs. Moreover, when coexpressed with wild-type (WT) CAV1 in MEFs, CAV1-P158 functions as a dominant negative by partially disrupting WT CAV1 trafficking. In patient skin fibroblasts, CAV1 and caveolar accessory protein levels are reduced, fewer caveolae are observed, and CAV1 complexes exhibit biochemical abnormalities. Patient fibroblasts also exhibit decreased resistance to a hypo-osmotic challenge, suggesting the function of caveolae as membrane reservoir is compromised. We conclude that the P158PfsX22 frameshift introduces a gain of function that gives rise to a dominant negative form of CAV1, defining a new mechanism by which disease-associated mutations in CAV1 impair caveolae assembly.
© 2017 Copeland, Han, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
MeSH Terms
ERAD-icating mutant insulin promotes functional insulin secretion.
Moore DJ
(2017) Sci Transl Med 9:
MeSH Terms: Endoplasmic Reticulum, Endoplasmic Reticulum-Associated Degradation, Insulin, Insulin Secretion, Proinsulin, Protein Folding
Show Abstract · Added January 20, 2017
Overexpression of a chaperone protein liberates functional insulin from a misfolded mutant partner to improve insulin secretion.
Copyright © 2017, American Association for the Advancement of Science.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis.
Linton MF, Babaev VR, Huang J, Linton EF, Tao H, Yancey PG
(2016) Circ J 80: 2259-2268
MeSH Terms: Animals, Atherosclerosis, Endoplasmic Reticulum Stress, Humans, I-kappa B Kinase, Isoenzymes, Macrophages, Mechanistic Target of Rapamycin Complex 2, Mitogen-Activated Protein Kinase 8, Multiprotein Complexes, Proto-Oncogene Proteins c-akt, Signal Transduction, TOR Serine-Threonine Kinases, Unfolded Protein Response
Show Abstract · Added April 10, 2018
Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. (Circ J 2016; 80: 2259-2268).
0 Communities
1 Members
0 Resources
MeSH Terms
Jnk1 Deficiency in Hematopoietic Cells Suppresses Macrophage Apoptosis and Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice.
Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF
(2016) Arterioscler Thromb Vasc Biol 36: 1122-31
MeSH Terms: Animals, Aorta, Aortic Diseases, Apoptosis, Atherosclerosis, Bone Marrow Cells, Bone Marrow Transplantation, Cell Survival, Cells, Cultured, Diet, High-Fat, Disease Models, Animal, Endoplasmic Reticulum Stress, Genetic Predisposition to Disease, Hypercholesterolemia, Macrophages, Mice, Inbred C57BL, Mice, Knockout, Mitogen-Activated Protein Kinase 8, Mitogen-Activated Protein Kinase 9, PTEN Phosphohydrolase, Phenotype, Plaque, Atherosclerotic, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Receptors, LDL, Signal Transduction, bcl-Associated Death Protein
Show Abstract · Added April 10, 2018
OBJECTIVE - The c-Jun NH2-terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis.
APPROACH AND RESULTS - To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr(-/-) mice were reconstituted with wild-type, Jnk1(-/-), and Jnk2(-/-) hematopoietic cells and fed a high cholesterol diet. Jnk1(-/-)→Ldlr(-/-) mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2(-/-) cells. Moreover, genetic ablation of JNK to a single allele (Jnk1(+/-)/Jnk2(-/-) or Jnk1(-/-)/Jnk2(+/-)) in marrow of Ldlr(-/-) recipients further increased atherosclerosis compared with Jnk1(-/-)→Ldlr(-/-) and wild-type→Ldlr(-/-) mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1(-/-) macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways.
CONCLUSIONS - Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms