Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 279

Publication Record

Connections

Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20.
Wang Z, Schey KL
(2018) Invest Ophthalmol Vis Sci 59: 5648-5658
MeSH Terms: Animals, Aquaporin 5, Blotting, Western, Cattle, Chromatography, Liquid, Electrophoresis, Polyacrylamide Gel, Eye Proteins, Immunoblotting, Lens, Crystalline, Lipoylation, Membrane Proteins, Palmitates, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 4, 2019
Purpose - The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein-protein interactions in the lens.
Methods - The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange.
Results - The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus.
Conclusions - AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Identification of a Novel Transcript and Regulatory Mechanism for Microsomal Triglyceride Transfer Protein.
Suzuki T, Brown JJ, Swift LL
(2016) PLoS One 11: e0147252
MeSH Terms: Alternative Splicing, Animals, CHO Cells, Carrier Proteins, Cricetulus, Electrophoresis, Polyacrylamide Gel, Female, HEK293 Cells, Humans, Mice, Protein Isoforms, RNA, Messenger, Rabbits, Reverse Transcriptase Polymerase Chain Reaction
Show Abstract · Added February 22, 2016
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of triglyceride-rich apolipoprotein B-containing lipoproteins. Previous studies in our laboratory identified a novel splice variant of MTP in mice that we named MTP-B. MTP-B has a unique first exon (1B) located 2.7 kB upstream of the first exon (1A) for canonical MTP (MTP-A). The two mature isoforms, though nearly identical in sequence and function, have different tissue expression patterns. In this study we report the identification of a second MTP splice variant (MTP-C), which contains both exons 1B and 1A. MTP-C is expressed in all the tissues we tested. In cells transfected with MTP-C, protein expression was less than 15% of that found when the cells were transfected with MTP-A or MTP-B. In silico analysis of the 5'-UTR of MTP-C revealed seven ATGs upstream of the start site for MTP-A, which is the only viable start site in frame with the main coding sequence. One of those ATGs was located in the 5'-UTR for MTP-A. We generated reporter constructs in which the 5'-UTRs of MTP-A or MTP-C were inserted between an SV40 promoter and the coding sequence of the luciferase gene and transfected these constructs into HEK 293 cells. Luciferase activity was significantly reduced by the MTP-C 5'-UTR, but not by the MTP-A 5'-UTR. We conclude that alternative splicing plays a key role in regulating MTP expression by introducing unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP levels and activity.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence.
Harding CM, Kinsella RL, Palmer LD, Skaar EP, Feldman MF
(2016) PLoS Pathog 12: e1005391
MeSH Terms: Acinetobacter, Acinetobacter Infections, Animals, Electrophoresis, Gel, Two-Dimensional, Electrophoresis, Polyacrylamide Gel, Humans, Mice, Mice, Inbred C57BL, Molecular Chaperones, Type II Secretion Systems, Virulence
Show Abstract · Added February 8, 2016
Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes.
Love JD, Suzuki T, Robinson DB, Harris CM, Johnson JE, Mohler PJ, Jerome WG, Swift LL
(2015) PLoS One 10: e0135598
MeSH Terms: 3T3-L1 Cells, Adipocytes, Animals, Carrier Proteins, Cell Differentiation, Cytosol, Electrophoresis, Polyacrylamide Gel, Immunohistochemistry, Lipid Droplets, Mice, Microscopy, Fluorescence, Reverse Transcriptase Polymerase Chain Reaction
Show Abstract · Added September 30, 2015
Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.
0 Communities
2 Members
0 Resources
12 MeSH Terms
A conserved role of αA-crystallin in the development of the zebrafish embryonic lens.
Zou P, Wu SY, Koteiche HA, Mishra S, Levic DS, Knapik E, Chen W, Mchaourab HS
(2015) Exp Eye Res 138: 104-13
MeSH Terms: Animals, Animals, Genetically Modified, Blotting, Western, Electrophoresis, Polyacrylamide Gel, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, Gene Knockout Techniques, Lens, Crystalline, Real-Time Polymerase Chain Reaction, Zebrafish, alpha-Crystallin A Chain
Show Abstract · Added July 23, 2015
αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts.
Copyright © 2015 Elsevier Ltd. All rights reserved.
1 Communities
2 Members
0 Resources
11 MeSH Terms
Recessive osteogenesis imperfecta caused by missense mutations in SPARC.
Mendoza-Londono R, Fahiminiya S, Majewski J, Care4Rare Canada Consortium, Tétreault M, Nadaf J, Kannu P, Sochett E, Howard A, Stimec J, Dupuis L, Roschger P, Klaushofer K, Palomo T, Ouellet J, Al-Jallad H, Mort JS, Moffatt P, Boudko S, Bächinger HP, Rauch F
(2015) Am J Hum Genet 96: 979-85
MeSH Terms: Amino Acid Sequence, Base Sequence, Collagen Type I, Electrophoresis, Polyacrylamide Gel, Exome, Female, Genes, Recessive, Humans, Immunoblotting, Models, Molecular, Molecular Sequence Data, Mutagenesis, Site-Directed, Mutation, Missense, Osteogenesis Imperfecta, Osteonectin, Pedigree, Protein Conformation, Sequence Alignment, Sequence Analysis, DNA
Show Abstract · Added November 2, 2017
Secreted protein, acidic, cysteine-rich (SPARC) is a glycoprotein that binds to collagen type I and other proteins in the extracellular matrix. Using whole-exome sequencing to identify the molecular defect in two unrelated girls with severe bone fragility and a clinical diagnosis of osteogenesis imperfecta type IV, we identified two homozygous variants in SPARC (GenBank: NM_003118.3; c.497G>A [p.Arg166His] in individual 1; c.787G>A [p.Glu263Lys] in individual 2). Published modeling and site-directed mutagenesis studies had previously shown that the residues substituted by these mutations form an intramolecular salt bridge in SPARC and are essential for the binding of SPARC to collagen type I. The amount of SPARC secreted by skin fibroblasts was reduced in individual 1 but appeared normal in individual 2. The migration of collagen type I alpha chains produced by these fibroblasts was mildly delayed on SDS-PAGE gel, suggesting some overmodification of collagen during triple helical formation. Pulse-chase experiments showed that collagen type I secretion was mildly delayed in skin fibroblasts from both individuals. Analysis of an iliac bone sample from individual 2 showed that trabecular bone was hypermineralized on the material level. In conclusion, these observations show that homozygous mutations in SPARC can give rise to severe bone fragility in humans.
Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
[Construction, expression, and identification of the gene of human anti-prostate specific membrane antigen single-chain antibody].
Su YS, Fu XL, Wang D, Wang QY, Liu N, Jia HB, Qin WJ, Wen WH, Wang H
(2014) Zhonghua Nan Ke Xue 20: 1063-7
MeSH Terms: Antigens, Surface, Cloning, Molecular, Electrophoresis, Polyacrylamide Gel, Escherichia coli, Glutamate Carboxypeptidase II, Humans, Male, Polymerase Chain Reaction, RNA, Small Interfering, Recombinant Fusion Proteins, Single-Chain Antibodies
Show Abstract · Added January 20, 2015
OBJECTIVE - To construct, express and purify human fusion proteins composed of a single-chain antibody fragment scFv that recognizes the prostate specific membrane antigen (PSMA) protein, Fdt, HA2 and tp, and to analyze the binding activity of the expressed fusion proteins.
METHODS - The fusion protein genes scFv, scFv-tp, and scFv-Fdt-HA2-tp were amplified by PCR, and the genes obtained were then cloned into the expression vector pET28 and expressed in E. coli BL21. The expressed products were identified by SDS-PAGE and Western blot and purified with Ni(2+)-NTA chelating agarose. The antigen-binding activity of the fusion proteins was determined by ELISA.
RESULTS - The human anti-PSMA fusion gene was successfully constructed and expressed in M15 as the inclusion body after induced with IPTG. All the target proteins expressed could bind the PSMA antigen.
CONCLUSION - Fusion proteins can specifically bind the PSMA antigen. This finding contributes to the study of the targeted delivery of siRNA.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner.
Kjøbsted R, Treebak JT, Fentz J, Lantier L, Viollet B, Birk JB, Schjerling P, Björnholm M, Zierath JR, Wojtaszewski JF
(2015) Diabetes 64: 2042-55
MeSH Terms: AMP-Activated Protein Kinases, Aminoimidazole Carboxamide, Animals, Biological Transport, Blotting, Western, Electrophoresis, Polyacrylamide Gel, GTPase-Activating Proteins, Insulin, Mice, Muscle, Skeletal, Phosphorylation, Ribonucleotides
Show Abstract · Added May 16, 2019
An acute bout of exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise, insulin sensitivity to increased glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood but appear to involve an increased cell surface abundance of GLUT4. While increased proximal insulin signaling does not seem to mediate this effect, elevated phosphorylation of TBC1D4, a downstream target of both insulin (Akt) and exercise (AMPK) signaling, appears to play a role. The main purpose of this study was to determine whether AMPK activation increases skeletal muscle insulin sensitivity. We found that prior AICAR stimulation of wild-type mouse muscle increases insulin sensitivity to stimulate glucose uptake. However, this was not observed in mice with reduced or ablated AMPK activity in skeletal muscle. Furthermore, prior AICAR stimulation enhanced insulin-stimulated phosphorylation of TBC1D4 at Thr(649) and Ser(711) in wild-type muscle only. These phosphorylation events were positively correlated with glucose uptake. Our results provide evidence to support that AMPK activation is sufficient to increase skeletal muscle insulin sensitivity. Moreover, TBC1D4 phosphorylation may facilitate the effect of prior AMPK activation to enhance glucose uptake in response to insulin.
© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
1 Members
0 Resources
MeSH Terms
Steady-state kinetic analysis of DNA polymerase single-nucleotide incorporation products.
O'Flaherty DK, Guengerich FP
(2014) Curr Protoc Nucleic Acid Chem 59: 7.21.1-13
MeSH Terms: DNA, DNA Damage, DNA-Directed DNA Polymerase, Electrophoresis, Polyacrylamide Gel, Kinetics, Models, Chemical, Nucleotides
Show Abstract · Added January 20, 2015
This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases.
Copyright © 2014 John Wiley & Sons, Inc.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Selenoprotein P is the major selenium transport protein in mouse milk.
Hill KE, Motley AK, Winfrey VP, Burk RF
(2014) PLoS One 9: e103486
MeSH Terms: Animals, Animals, Newborn, Biological Transport, Electrophoresis, Polyacrylamide Gel, Female, Glutathione Peroxidase, In Situ Hybridization, Male, Mammary Glands, Animal, Mice, Inbred C57BL, Mice, Knockout, Milk, Selenium, Selenoprotein P, Weaning, Weight Gain
Show Abstract · Added September 28, 2015
Selenium is transferred from the mouse dam to its neonate via milk. Milk contains selenium in selenoprotein form as selenoprotein P (Sepp1) and glutathione peroxidase-3 (Gpx3) as well as in non-specific protein form as selenomethionine. Selenium is also present in milk in uncharacterized small-molecule form. We eliminated selenomethionine from the mice in these experiments by feeding a diet that contained sodium selenite as the source of selenium. Selenium-replete dams with deletion of Sepp1 or Gpx3 were studied to assess the effects of these genes on selenium transfer to the neonate. Sepp1 knockout caused a drop in milk selenium to 27% of the value in wild-type milk and a drop in selenium acquisition by the neonates to 35%. In addition to decreasing milk selenium by eliminating Sepp1, deletion of Sepp1 causes a decline in whole-body selenium, which likely also contributes to the decreased transfer of selenium to the neonate. Deletion of Gpx3 did not decrease milk selenium content or neonate selenium acquisition by measurable amounts. Thus, when the dam is fed selenium-adequate diet (0.25 mg selenium/kg diet), milk Sepp1 transfers a large amount of selenium to neonates but the transfer of selenium by Gpx3 is below detection by our methods.
0 Communities
1 Members
0 Resources
16 MeSH Terms