Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 45

Publication Record


The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production.
Sausville LN, Gangadhariah MH, Chiusa M, Mei S, Wei S, Zent R, Luther JM, Shuey MM, Capdevila JH, Falck JR, Guengerich FP, Williams SM, Pozzi A
(2018) Cancer Res 78: 4865-4877
MeSH Terms: Animals, Arachidonic Acid, Arachidonic Acids, Carcinogenesis, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Cytochrome P-450 CYP2C9, Cytochrome P-450 Enzyme System, Eicosanoids, Endothelial Cells, Humans, Mice, Polymorphism, Single Nucleotide, Xenograft Model Antitumor Assays
Show Abstract · Added October 25, 2018
Increased expression of cytochrome P450 CYP2C9, together with elevated levels of its products epoxyeicosatrienoic acids (EET), is associated with aggressiveness in cancer. Cytochrome P450 variants and encode proteins with reduced enzymatic activity, and individuals carrying these variants metabolize drugs more slowly than individuals with wild-type , potentially affecting their response to drugs and altering their risk of disease. Although genetic differences in CYP2C9-dependent oxidation of arachidonic acid (AA) have been reported, the roles of CYP2C9*2 and CYP2C9*3 in EET biosynthesis and their relevance to disease are unknown. Here, we report that CYP2C9*2 and CYP2C9*3 metabolize AA less efficiently than CYP2C9*1 and that they play a role in the progression of non-small cell lung cancer (NSCLC) via impaired EET biosynthesis. When injected into mice, NSCLC cells expressing CYP2C9*2 and CYP2C9*3 produced lower levels of EETs and developed fewer, smaller, and less vascularized tumors than cells expressing CYP2C9*1. Moreover, endothelial cells expressing these two variants proliferated and migrated less than cells expressing CYP2C*1. Purified CYP2C9*2 and CYP2C9*3 exhibited attenuated catalytic efficiency in producing EETs, primarily due to impaired reduction of these two variants by NADPH-P450 reductase. Loss-of-function SNPs within and were associated with improved survival in female cases of NSCLC. Thus, decreased EET biosynthesis represents a novel mechanism whereby CYPC29*2 and CYP2C9*3 exert a direct protective role in NSCLC development. These findings report single nucleotide polymorphisms in the human CYP2C9 genes, and , exert a direct protective role in tumorigenesis by impairing EET biosynthesis. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans.
Gangadhariah MH, Dieckmann BW, Lantier L, Kang L, Wasserman DH, Chiusa M, Caskey CF, Dickerson J, Luo P, Gamboa JL, Capdevila JH, Imig JD, Yu C, Pozzi A, Luther JM
(2017) Diabetologia 60: 1066-1075
MeSH Terms: Animals, Cytochrome P-450 Enzyme System, Cytochrome P450 Family 2, Eicosanoids, Insulin Resistance, Islets of Langerhans, Male, Mesenteric Arteries, Mice
Show Abstract · Added April 26, 2017
AIMS/HYPOTHESIS - Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans.
METHODS - We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry.
RESULTS - Cyp2c44 mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg min in WT and Cyp2c44 mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 mice in vivo (gastrocnemius R 16.4 ± 2.0 vs 6.2 ± 1.7 μmol 100 g min, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular K-induced relaxation was impaired in isolated Cyp2c44 vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants.
CONCLUSIONS/INTERPRETATION - CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.
0 Communities
3 Members
0 Resources
9 MeSH Terms
Urine Eicosanoids in the Metabolic Abnormalities, Telmisartan, and HIV Infection (MATH) Trial.
Le CN, Hulgan T, Tseng CH, Milne GL, Lake JE
(2017) PLoS One 12: e0170515
MeSH Terms: Adipose Tissue, Adult, Angiotensin II Type 1 Receptor Blockers, Anthropometry, Anti-HIV Agents, Antiretroviral Therapy, Highly Active, Benzimidazoles, Benzoates, Body Fat Distribution, Eicosanoids, Female, HIV Infections, Humans, Inflammation, Lipodystrophy, Male, Middle Aged, Oxidative Stress, Pilot Projects, Prospective Studies, Sex Factors, Telmisartan, Waist-Hip Ratio
Show Abstract · Added December 11, 2019
OBJECTIVES - Arachidonic acid metabolites (eicosanoids) reflect oxidative stress and vascular health and have been associated with anthropometric measures and sex differences in cross-sectional analyses of HIV-infected (HIV+) persons. Telmisartan is an angiotensin receptor blocker and PPAR-γ agonist with potential anti-inflammatory and metabolic benefits. We assessed telmisartan's effects on urine eicosanoids among HIV+ adults with central adiposity on suppressive antiretroviral therapy enrolled in a prospective clinical trial.
METHODS - Thirty-five HIV+ adults (15 women; 20 men) completed 24 weeks of open-label oral telmisartan 40mg daily. Lumbar computed tomography quantified visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue. Urine F2-isoprostane (F2-IsoP), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB-M) were quantified at baseline and 24 weeks using gas/liquid chromatography-mass spectroscopy. Mann-Whitney-U tests compared sub-group differences; Spearman's rho assessed correlations between clinical factors and eicosanoid levels.
RESULTS - Median PGE-M increased on telmisartan (p<0.01), with greater changes in men (+4.1 [p = 0.03] vs. +1.0 ng/mg cr in women; between-group p = 0.25) and participants losing >5% VAT (+3.7 ng/mg cr, p<0.01) and gaining >5% SAT (+1.7 ng/mg cr, p = 0.04). Median baseline F2-IsoP and TxB-M were slightly higher in women (both between-group p = 0.08) and did not change on telmisartan.
CONCLUSIONS - Urine PGE-M increased with 24 weeks of telmisartan in virally suppressed, HIV+ adults with central adiposity. Associations with favorable fat redistribution suggest increased PGE-M may reflect a beneficial response.
0 Communities
1 Members
0 Resources
MeSH Terms
Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction.
Teder T, Boeglin WE, Brash AR
(2014) J Lipid Res 55: 2587-96
MeSH Terms: 8,11,14-Eicosatrienoic Acid, Animals, Arachidonate 12-Lipoxygenase, Arachidonate 15-Lipoxygenase, Biocatalysis, Blood Platelets, Chromatography, High Pressure Liquid, Eicosanoids, Epoxy Compounds, Gas Chromatography-Mass Spectrometry, Humans, Hydroxylation, Linolenic Acids, Lipid Peroxides, Lipoxygenase, Mice, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Recombinant Proteins, Soybean Proteins, Spectrometry, Mass, Electrospray Ionization, Stereoisomerism
Show Abstract · Added January 21, 2015
Herein, we characterize a generally applicable transformation of fatty acid epoxides by lipoxygenase (LOX) enzymes that results in the formation of a five-membered endoperoxide ring in the end product. We demonstrated this transformation using soybean LOX-1 in the metabolism of 15,16-epoxy-α-linolenic acid, and murine platelet-type 12-LOX and human 15-LOX-1 in the metabolism of 14,15-epoxyeicosatrienoic acid (14,15-EET). A detailed examination of the transformation of the two enantiomers of 15,16-epoxy-α-linolenic acid by soybean LOX-1 revealed that the expected primary product, a 13S-hydroperoxy-15,16-epoxide, underwent a nonenzymatic transformation in buffer into a new derivative that was purified by HPLC and identified by UV, LC-MS, and ¹H-NMR as a 13,15-endoperoxy-16-hydroxy-octadeca-9,11-dienoic acid. The configuration of the endoperoxide (cis or trans side chains) depended on the steric relationship of the new hydroperoxy moiety to the enantiomeric configuration of the fatty acid epoxide. The reaction mechanism involves intramolecular nucleophilic substitution (SNi) between the hydroperoxy (nucleophile) and epoxy group (electrophile). Equivalent transformations were documented in metabolism of the enantiomers of 14,15-EET by the two mammalian LOX enzymes, 15-LOX-1 and platelet-type 12-LOX. We conclude that this type of transformation could occur naturally with the co-occurrence of LOX and cytochrome P450 or peroxygenase enzymes, and it could also contribute to the complexity of products formed in the autoxidation reactions of polyunsaturated fatty acids.
Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.
Hulgan T, Boger MS, Liao DH, McComsey GA, Wanke CA, Mangili A, Walmsley SL, McCreath H, Milne GL, Sanchez SC, Currier JS, Lake JE
(2014) Mediators Inflamm 2014: 803095
MeSH Terms: Adult, Cross-Sectional Studies, Eicosanoids, Female, HIV Infections, Humans, Integrases, Middle Aged, Obesity, Abdominal, Pyrrolidinones, Raltegravir Potassium, Reverse Transcriptase Inhibitors
Show Abstract · Added July 8, 2014
Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≥ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study.
1 Communities
0 Members
0 Resources
12 MeSH Terms
Introduction. P450 metabolites of arachidonic acid--from biochemistry to therapy.
Brown NJ, Falck JR
(2013) Prostaglandins Other Lipid Mediat 104-105: 1
MeSH Terms: Animals, Arachidonic Acid, Cytochrome P-450 Enzyme System, Eicosanoids, Humans
Added March 7, 2014
0 Communities
1 Members
0 Resources
5 MeSH Terms
12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity.
Yeung J, Apopa PL, Vesci J, Stolla M, Rai G, Simeonov A, Jadhav A, Fernandez-Perez P, Maloney DJ, Boutaud O, Holman TR, Holinstat M
(2013) Thromb Haemost 110: 569-81
MeSH Terms: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid, Animals, Arachidonate 12-Lipoxygenase, Blood Platelets, Cyclooxygenase 1, Eicosanoids, Flow Cytometry, Humans, Mice, Mice, Transgenic, Platelet Activation, Platelet Adhesiveness, Platelet Aggregation, Platelet Membrane Glycoproteins, Receptors, Thrombin, Thrombosis, Time Factors
Show Abstract · Added March 27, 2014
Following initial platelet activation, arachidonic acid is metabolised by cyclooxygenase-1 and 12-lipoxygenase (12-LOX). While the role of 12-LOX in the platelet is not well defined, recent evidence suggests that it may be important for regulation of platelet activity and is agonist-specific in the manner in which it regulates platelet function. Using small molecule inhibitors selective for 12-LOX and 12-LOX-deficient mice, the role of 12-LOX in regulation of human platelet activation and thrombosis was investigated. Pharmacologically inhibiting 12-LOX resulted in attenuation of platelet aggregation, selective inhibition of dense versus alpha granule secretion, and inhibition of platelet adhesion under flow for PAR4 and collagen. Additionally, 12-LOX-deficient mice showed attenuated integrin activity to PAR4-AP and convulxin compared to wild-type mice. Finally, platelet activation by PARs was shown to be differentially dependent on COX-1 and 12-LOX with PAR1 relying on COX-1 oxidation of arachidonic acid while PAR4 being more dependent on 12-LOX for normal platelet function. These studies demonstrate an important role for 12-LOX in regulating platelet activation and thrombosis. Furthermore, the data presented here provide a basis for potentially targeting 12-LOX as a means to attenuate unwanted platelet activation and clot formation.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Cytochromes p450: roles in diseases.
Pikuleva IA, Waterman MR
(2013) J Biol Chem 288: 17091-8
MeSH Terms: Animals, Cholecalciferol, Cytochrome P-450 Enzyme System, Eicosanoids, Humans, Metabolic Diseases, Mutation, Steroids
Show Abstract · Added March 7, 2014
The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Sex differences in urinary biomarkers of vascular and endothelial function in HIV-infected persons receiving antiretroviral therapy.
Boger MS, Bian A, Shintani A, Milne GL, Morrow JD, Erdem H, Mitchell V, Haas DW, Hulgan T
(2012) Antivir Ther 17: 485-93
MeSH Terms: Adult, Anti-HIV Agents, Biomarkers, Cardiovascular Diseases, Eicosanoids, Female, HIV Infections, Humans, Male, Middle Aged, Pilot Projects, Prospective Studies, Reverse Transcriptase Inhibitors, Risk Factors, Sex Characteristics
Show Abstract · Added December 5, 2013
BACKGROUND - Cardiovascular disease (CVD) risk can be underestimated in HIV-infected patients receiving antiretroviral therapy (ART). Novel CVD risk markers in this population are needed. We hypothesized that eicosanoid metabolite production is increased with metabolic complications of ART. Our objective was to determine relationships between urine eicosanoids and traditional CVD risk factors in a cohort of HIV-infected persons receiving ART.
METHODS - Cross-sectional analysis of 107 individuals from a prospective cohort study with urine eicosanoids (isoprostane [15-F(2t)-IsoP], prostaglandin-E metabolite [PGE-M], thromboxane metabolite [11dTxB(2)], prostacyclin metabolite [PGI-M]) determined by gas or liquid chromatography-mass spectrometry.
RESULTS - 15-F(2t)-IsoP was higher (P=0.003), 11dTxB(2) tended to be higher (P=0.07) and PGE-M was lower (P=0.003) in females than in males. The overall median Framingham score was 4 (IQR 1-7). In multivariable analyses adjusting for age, CD4(+) T-cells, smoking status, non-steroidal anti-inflammatory drug use, aspirin use and body mass index (BMI), associations included: higher 15-F(2t)-IsoP with female sex (P=0.004) and current smoking (P=0.04), lower PGE-M with female sex (P=0.005) and higher BMI (P=0.03), higher 11dTxB(2) with increasing age (P=0.02) and current smoking (P=0.04), lower 11dTxB(2) with higher BMI (P=0.02), and higher PGI-M with current smoking (P=0.04).
CONCLUSIONS - In this pilot study of predominantly virologically suppressed HIV-infected individuals on ART, there were sex-specific differences in urinary eicosanoids, with females having more risk-associated parameters despite a low Framingham score. Eicosanoids might be useful CVD biomarkers in ART-treated, HIV-infected patients. Future studies should examine eicosanoids while assessing effects of specific ART regimens and targeted interventions on CVD outcomes.
2 Communities
2 Members
0 Resources
15 MeSH Terms
Cyclooxygenases and lipoxygenases in cancer.
Schneider C, Pozzi A
(2011) Cancer Metastasis Rev 30: 277-94
MeSH Terms: Animals, Antineoplastic Agents, Arachidonate Lipoxygenases, Cell Transformation, Neoplastic, Cyclooxygenase Inhibitors, Eicosanoids, Humans, Linoleic Acids, Neoplasms, Prostaglandin-Endoperoxide Synthases
Show Abstract · Added February 24, 2014
Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell-cell interactions, cell-matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.
0 Communities
2 Members
1 Resources
10 MeSH Terms