Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 440

Publication Record

Connections

miR-302a Inhibits Metastasis and Cetuximab Resistance in Colorectal Cancer by Targeting NFIB and CD44.
Sun L, Fang Y, Wang X, Han Y, Du F, Li C, Hu H, Liu H, Liu Q, Wang J, Liang J, Chen P, Yang H, Nie Y, Wu K, Fan D, Coffey RJ, Lu Y, Zhao X, Wang X
(2019) Theranostics 9: 8409-8425
MeSH Terms: Caco-2 Cells, Cetuximab, Colorectal Neoplasms, Drug Resistance, Neoplasm, Gene Expression Regulation, Neoplastic, HCT116 Cells, Humans, Hyaluronan Receptors, In Vitro Techniques, MicroRNAs, NFI Transcription Factors, Neoplasm Metastasis, Signal Transduction
Show Abstract · Added March 3, 2020
: Metastasis and drug resistance contribute substantially to the poor prognosis of colorectal cancer (CRC) patients. However, the epigenetic regulatory mechanisms by which CRC develops metastatic and drug-resistant characteristics remain unclear. This study aimed to investigate the role of miR-302a in the metastasis and molecular-targeted drug resistance of CRC and elucidate the underlying molecular mechanisms. : miR-302a expression in CRC cell lines and patient tissue microarrays was analyzed by qPCR and fluorescence hybridization. The roles of miR-302a in metastasis and cetuximab (CTX) resistance were evaluated both and . Bioinformatic prediction algorithms and luciferase reporter assays were performed to identify the miR-302a binding regions in the NFIB and CD44 3'-UTRs. A chromatin immunoprecipitation assay was performed to examine NFIB occupancy in the ITGA6 promoter region. Immunoblotting was performed to identify the EGFR-mediated pathways altered by miR-302a. : miR-302a expression was frequently reduced in CRC cells and tissues, especially in CTX-resistant cells and patient-derived xenografts. The decreased miR-302a levels correlated with poor overall CRC patient survival. miR-302a overexpression inhibited metastasis and restored CTX responsiveness in CRC cells, whereas miR-302a silencing exerted the opposite effects. NFIB and CD44 were identified as novel targets of miR-302a. miR-302a inhibited the metastasis-promoting effect of NFIB that physiologically activates ITGA6 transcription. miR-302a restored CTX responsiveness by suppressing CD44-induced cancer stem cell-like properties and EGFR-mediated MAPK and AKT signaling. These results are consistent with clinical observations indicating that miR-302a expression is inversely correlated with the expression of its targets in CRC specimens. : Our findings show that miR-302a acts as a multifaceted regulator of CRC metastasis and CTX resistance by targeting NFIB and CD44, respectively. Our study implicates miR-302a as a candidate prognostic predictor and a therapeutic agent in CRC.
© The author(s).
0 Communities
1 Members
0 Resources
13 MeSH Terms
Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers.
Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, Albert R, Lopez CF, Sage J, Quaranta V
(2019) PLoS Comput Biol 15: e1007343
MeSH Terms: Algorithms, Animals, Basic Helix-Loop-Helix Transcription Factors, Bayes Theorem, Cell Line, Tumor, Cluster Analysis, Databases, Genetic, Drug Resistance, Neoplasm, Gene Expression, Gene Expression Regulation, Neoplastic, Gene Ontology, Gene Regulatory Networks, Humans, Mice, Models, Theoretical, Small Cell Lung Carcinoma, Systems Analysis, Transcription Factors
Show Abstract · Added March 30, 2020
Adopting a systems approach, we devise a general workflow to define actionable subtypes in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four subtypes based on global gene expression patterns and ontologies. Three correspond to known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously undescribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with subtype gene signatures shows that all of the subtypes are detectable in varying proportions in human and mouse tumors. To understand how multiple stable subtypes can arise within a tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-constrained Boolean rule-fitting approach. In silico perturbations of the network identify master regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer. Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sensitive, these findings may lead to actionable therapeutic strategies that consider SCLC intratumoral heterogeneity. Our systems-level approach should generalize to other cancer types.
0 Communities
1 Members
0 Resources
MeSH Terms
Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism.
Beavers WN, Monteith AJ, Amarnath V, Mernaugh RL, Roberts LJ, Chazin WJ, Davies SS, Skaar EP
(2019) mBio 10:
MeSH Terms: Animals, Anti-Bacterial Agents, Arachidonic Acid, Brain, Dose-Response Relationship, Drug, Drug Resistance, Bacterial, Female, Kidney, Lipid Peroxidation, Lipids, Mice, Mice, Inbred BALB C, Microbial Sensitivity Tests, Mutation, Neutrophils, Oxidative Stress, Reactive Oxygen Species, Spleen, Staphylococcal Infections, Staphylococcus aureus, Teichoic Acids
Show Abstract · Added March 11, 2020
infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to Here, we report that AA kills through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a strain genetically inactivated for (USA300 mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat infections. Despite the ability of the human immune system to generate a plethora of molecules to control infections, is among the pathogens with the greatest impact on human health. One class of host molecules toxic to consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills , and by which avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate infections.
Copyright © 2019 Beavers et al.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.
Irvin MR, Sitlani CM, Floyd JS, Psaty BM, Bis JC, Wiggins KL, Whitsel EA, Sturmer T, Stewart J, Raffield L, Sun F, Liu CT, Xu H, Cupples AL, Tanner RM, Rossing P, Smith A, Zilhão NR, Launer LJ, Noordam R, Rotter JI, Yao J, Li X, Guo X, Limdi N, Sundaresan A, Lange L, Correa A, Stott DJ, Ford I, Jukema JW, Gudnason V, Mook-Kanamori DO, Trompet S, Palmas W, Warren HR, Hellwege JN, Giri A, O'donnell C, Hung AM, Edwards TL, Ahluwalia TS, Arnett DK, Avery CL
(2019) Am J Hypertens 32: 1146-1153
MeSH Terms: African Americans, Aged, Antihypertensive Agents, Blood Pressure, Case-Control Studies, DNA (Cytosine-5-)-Methyltransferases, DNA-Binding Proteins, Drug Resistance, Dystrophin-Associated Proteins, Europe, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Male, Middle Aged, Myosin Heavy Chains, Myosin Type V, Neuropeptides, Pharmacogenetics, Pharmacogenomic Variants, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Transcription Factors, United States
Show Abstract · Added March 3, 2020
BACKGROUND - Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.
METHODS - We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.
RESULTS - The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10-8) and in the race-combined analysis (P = 1.5 × 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.
CONCLUSION - This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.
© American Journal of Hypertension, Ltd 2019. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Monitoring Therapeutic Response and Resistance: Analysis of Circulating Tumor DNA in Patients With ALK+ Lung Cancer.
Horn L, Whisenant JG, Wakelee H, Reckamp KL, Qiao H, Leal TA, Du L, Hernandez J, Huang V, Blumenschein GR, Waqar SN, Patel SP, Nieva J, Oxnard GR, Sanborn RE, Shaffer T, Garg K, Holzhausen A, Harrow K, Liang C, Lim LP, Li M, Lovly CM
(2019) J Thorac Oncol 14: 1901-1911
MeSH Terms: Adult, Aged, Aged, 80 and over, Anaplastic Lymphoma Kinase, Carcinoma, Non-Small-Cell Lung, Circulating Tumor DNA, Drug Resistance, Neoplasm, Female, Humans, Lung Neoplasms, Male, Middle Aged, Mutation, Oncogene Proteins, Fusion, Piperazines, Prognosis, Protein Kinase Inhibitors, Pyridazines
Show Abstract · Added March 18, 2020
INTRODUCTION - Despite initial effectiveness of ALK receptor tyrosine kinase inhibitors (TKIs) in patients with ALK+ NSCLC, therapeutic resistance will ultimately develop. Serial tracking of genetic alterations detected in circulating tumor DNA (ctDNA) can be an informative strategy to identify response and resistance. This study evaluated the utility of analyzing ctDNA as a function of response to ensartinib, a potent second-generation ALK TKI.
METHODS - Pre-treatment plasma was collected from 76 patients with ALK+ NSCLC who were ALK TKI-naive or had received prior ALK TKI, and analyzed for specific genetic alterations. Longitudinal plasma samples were analyzed from a subset (n = 11) of patients. Analysis of pre-treatment tumor biopsy specimens from 22 patients was compared with plasma.
RESULTS - Disease-associated genetic alterations were detected in 74% (56 of 76) of patients, the most common being EML4-ALK. Concordance of ALK fusion between plasma and tissue was 91% (20 of 22 blood and tissue samples). Twenty-four ALK kinase domain mutations were detected in 15 patients, all had previously received an ALK TKI; G1269A was the most prevalent (4 of 24). Patients with a detectable EML4-ALK variant 1 (V1) fusion had improved response (9 of 17 patients; 53%) to ensartinib compared to patients with EML4-ALK V3 fusion (one of seven patients; 14%). Serial changes in ALK alterations were observed during therapy.
CONCLUSIONS - Clinical utility of ctDNA was shown, both at pre-treatment by identifying a potential subgroup of ALK+ NSCLC patients who may derive more benefit from ensartinib and longitudinally by tracking resistance. Prospective application of this technology may translate to improved outcomes for NSCLC patients treated with ALK TKIs.
Copyright © 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Bcl2-Expressing Quiescent Type B Neural Stem Cells in the Ventricular-Subventricular Zone Are Resistant to Concurrent Temozolomide/X-Irradiation.
Cameron BD, Traver G, Roland JT, Brockman AA, Dean D, Johnson L, Boyd K, Ihrie RA, Freeman ML
(2019) Stem Cells 37: 1629-1639
MeSH Terms: Animals, Antineoplastic Agents, Alkylating, Apoptosis, Chemoradiotherapy, DNA Breaks, Double-Stranded, DNA Repair, Disease Models, Animal, Drug Resistance, Female, Glioblastoma, Lateral Ventricles, Male, Mice, Mice, Inbred C57BL, Neural Stem Cells, Neurogenesis, Proto-Oncogene Proteins c-bcl-2, Temozolomide, X-Ray Therapy
Show Abstract · Added March 3, 2020
The ventricular-subventricular zone (V-SVZ) of the mammalian brain is a site of adult neurogenesis. Within the V-SVZ reside type B neural stem cells (NSCs) and type A neuroblasts. The V-SVZ is also a primary site for very aggressive glioblastoma (GBM). Standard-of-care therapy for GBM consists of safe maximum resection, concurrent temozolomide (TMZ), and X-irradiation (XRT), followed by adjuvant TMZ therapy. The question of how this therapy impacts neurogenesis is not well understood and is of fundamental importance as normal tissue tolerance is a limiting factor. Here, we studied the effects of concurrent TMZ/XRT followed by adjuvant TMZ on type B stem cells and type A neuroblasts of the V-SVZ in C57BL/6 mice. We found that chemoradiation induced an apoptotic response in type A neuroblasts, as marked by cleavage of caspase 3, but not in NSCs, and that A cells within the V-SVZ were repopulated given sufficient recovery time. 53BP1 foci formation and resolution was used to assess the repair of DNA double-strand breaks. Remarkably, the repair was the same in type B and type A cells. While Bax expression was the same for type A or B cells, antiapoptotic Bcl2 and Mcl1 expression was significantly greater in NSCs. Thus, the resistance of type B NSCs to TMZ/XRT appears to be due, in part, to high basal expression of antiapoptotic proteins compared with type A cells. This preclinical research, demonstrating that murine NSCs residing in the V-SVZ are tolerant of standard chemoradiation therapy, supports a dose escalation strategy for treatment of GBM. Stem Cells 2019;37:1629-1639.
© 2019 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press 2019.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Helicobacter pylori antimicrobial resistance and antibiotic consumption in the low-resource Central America setting.
Ortiz V, Estevez-Ordonez D, Montalvan-Sanchez E, Urrutia-Argueta S, Israel D, Krishna US, Romero-Gallo J, Wilson KT, Peek RM, Dominguez R, Morgan DR
(2019) Helicobacter 24: e12595
MeSH Terms: Adult, Aged, Amoxicillin, Anti-Bacterial Agents, Central America, Drug Resistance, Bacterial, Female, Helicobacter Infections, Helicobacter pylori, Humans, Levofloxacin, Male, Microbial Sensitivity Tests, Middle Aged
Show Abstract · Added May 23, 2019
BACKGROUND - Antimicrobial resistance is a global public health problem, particularly in low- and middle-income countries (LMICs), where antibiotics are often obtained without a prescription. H. pylori antimicrobial resistance patterns are informative for patient care and gastric cancer prevention programs, have been shown to correlate with general antimicrobial consumption, and may guide antimicrobial stewardship programs in LMICs. We report H. pylori resistance and antimicrobial utilization patterns for western Honduras, representative of rural Central America.
METHODS - In the context of the western Honduras gastric cancer epidemiology initiative, gastric biopsies from 189 patients were studied for culture and resistance patterns. Antimicrobial utilization was investigated for common H. pylori treatment regimens from regional public (7 antimicrobials) and national private (4 antimicrobials) data, analyzed in accordance with WHO anatomical therapeutic chemical defined daily doses (DDD) method and expressed as DDD/1000 inhabitants per day (DID) and per year (DIY).
RESULTS - H. pylori was successfully cultured from 116 patients (56% males, mean age: 54), and nearly all strains were cagA+ and vacAs1m1+ positive (99% and 90.4%, respectively). Unexpectedly, high resistance was noted for levofloxacin (20.9%) and amoxicillin (10.7%), while metronidazole (67.9%) and clarithromycin (11.2%) were similar to data from Latin America. Significant associations with age, gender, or histology were not noted, with the exception of levofloxacin (28%, P = 0.01) in those with histology limited to non-atrophic gastritis. Total antimicrobial usage in western Honduras of amoxicillin (17.3 DID) and the quinolones had the highest relative utilizations compared with other representative nations.
CONCLUSIONS - We observed significant H. pylori resistance to amoxicillin and levofloxacin in the context of high community antimicrobial utilization. This has implications in Central America for H. pylori treatment guidelines as well as antimicrobial stewardship programs.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
A Clinical Review of Diabetic Foot Infections.
Chastain CA, Klopfenstein N, Serezani CH, Aronoff DM
(2019) Clin Podiatr Med Surg 36: 381-395
MeSH Terms: Anti-Bacterial Agents, Debridement, Diabetic Foot, Drug Resistance, Microbial, Humans, Infectious Disease Medicine, Osteomyelitis, Risk Factors, Wound Healing
Show Abstract · Added March 18, 2020
"Diabetic foot infections (DFIs) are a common cause of morbidity and mortality. This article summarizes current knowledge regarding DFI epidemiology, disease pathogenesis, and the impact of antimicrobial resistance among DFI. An evidence-based approach to clinical assessment, diagnosing osteomyelitis, as well as medical and surgical treatment is discussed, including a review of empiric and directed antibiotic treatment recommendations. The current state and needs of the clinical literature are identified throughout, with a discussion of the supporting role of infectious diseases specialists as well as future directions of the field."
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Radiosensitization by enzalutamide for human prostate cancer is mediated through the DNA damage repair pathway.
Sekhar KR, Wang J, Freeman ML, Kirschner AN
(2019) PLoS One 14: e0214670
MeSH Terms: Aged, Animals, Cell Line, Tumor, Cell Proliferation, DNA Damage, DNA Repair, Drug Resistance, Neoplasm, Humans, Male, Mice, Mice, Nude, Mice, Transgenic, Phenylthiohydantoin, Prostatic Neoplasms, Prostatic Neoplasms, Castration-Resistant, Radiation Tolerance, Radiation-Sensitizing Agents, Signal Transduction, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Radiation therapy is often combined with androgen deprivation therapy in the treatment of aggressive localized prostate cancer. However, castration-resistant disease may not respond to testosterone deprivation approaches. Enzalutamide is a second-generation anti-androgen with high affinity and activity that is used for the treatment of metastatic disease. Although radiosensitization mechanisms are known to be mediated through androgen receptor activity, this project aims to uncover the detailed DNA damage repair factors influenced by enzalutamide using multiple models of androgen-sensitive (LNCaP) and castration-resistant human prostate cancer (22Rv1 and DU145). Enzalutamide is able to radiosensitize both androgen-dependent and androgen-independent human prostate cancer models in cell culture and xenografts in mice, as well as a treatment-resistant patient-derived xenograft. The enzalutamide-mediated mechanism of radiosensitization includes delay of DNA repair through temporal prolongation of the repair factor complexes and halting the cell cycle, which results in decreased colony survival. Altogether, these findings support the use of enzalutamide concurrently with radiotherapy to enhance the treatment efficacy for prostate cancer.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL
(2019) Nat Commun 10: 1373
MeSH Terms: Aminopyridines, Animals, Antineoplastic Agents, Hormonal, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Circulating Tumor DNA, Cyclin D1, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Drug Resistance, Neoplasm, Female, Fulvestrant, High-Throughput Nucleotide Sequencing, Humans, MCF-7 Cells, Mice, Mutation, Naphthalenes, Piperazines, Progression-Free Survival, Proportional Hazards Models, Protein Kinase Inhibitors, Purines, Pyrazoles, Pyridines, Quinolines, Quinoxalines, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen, Signal Transduction, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.
0 Communities
1 Members
0 Resources
32 MeSH Terms