Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 138

Publication Record


Functional Coupling of K-Cl Cotransporter (KCC) to GABA-Gated Cl Channels in the Central Nervous System of Drosophila melanogaster Leads to Altered Drug Sensitivities.
Chen R, Prael FJ, Li Z, Delpire E, Weaver CD, Swale DR
(2019) ACS Chem Neurosci 10: 2765-2776
MeSH Terms: Animals, Central Nervous System, Chloride Channels, Drosophila Proteins, Drosophila melanogaster, Insecticide Resistance, Neurons, Signal Transduction, Symporters, Synaptic Transmission, gamma-Aminobutyric Acid
Show Abstract · Added April 10, 2019
GABAergic signaling is the cornerstone for fast synaptic inhibition of neural signaling in arthropods and mammals and is the molecular target for insecticides and pharmaceuticals, respectively. The K-Cl cotransporter (KCC) is the primary mechanism by which mature neurons maintain low intracellular Cl concentration, yet the fundamental physiology, comparative physiology, and toxicological relevance of insect KCC is understudied. Considering this, we employed electrophysiological, genetic, and pharmacological methods to characterize the physiological underpinnings of KCC function to the Drosophila CNS. Our data show that genetic ablation or pharmacological inhibition of KCC results in an increased spike discharge frequency and significantly ( P < 0.05) reduces the CNS sensitivity to γ-aminobutyric acid (GABA). Further, simultaneous inhibition of KCC and ligand-gated chloride channel (LGCC) complex results in a significant ( P < 0.001) increase in CNS spontaneous activity over baseline firing rates that supports functional coupling of KCC to LGCC function. Interestingly, 75% reduction in KCC mRNA did not alter basal neurotransmission levels indicating that only a fraction of the KCC population is required to maintain the Cl ionic gradient when at rest, but prolonged synaptic activity increases the threshold for GABA-mediated inhibition and reduces nerve sensitivity to GABA. These data expand current knowledge regarding the physiological role of KCC in a model insect and provides the necessary foundation to develop KCC as a novel biochemical target of insecticides, as well as complements existing research to provide a holistic understanding of the plasticity in mammalian health and disease.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila.
Munden A, Rong Z, Sun A, Gangula R, Mallal S, Nordman JT
(2018) Elife 7:
MeSH Terms: Amino Acid Sequence, Animals, Carrier Proteins, DNA, DNA Replication, DNA-Binding Proteins, Drosophila Proteins, Drosophila melanogaster, Gene Dosage, Genome, Insect, Heat-Shock Response, Heterochromatin, Mutation, Protein Binding, Protein Domains, Reproducibility of Results, Salivary Glands
Show Abstract · Added March 3, 2020
Control of DNA copy number is essential to maintain genome stability and ensure proper cell and tissue function. In polyploid cells, the SNF2-domain-containing SUUR protein inhibits replication fork progression within specific regions of the genome to promote DNA underreplication. While dissecting the function of SUUR's SNF2 domain, we identified an interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the replication timing program. We demonstrate that repression of DNA replication is dependent on Rif1. Rif1 localizes to active replication forks in a partially SUUR-dependent manner and directly regulates replication fork progression. Importantly, SUUR associates with replication forks in the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression. Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication fork progression.
© 2018, Munden et al.
0 Communities
1 Members
0 Resources
MeSH Terms
Neuronal Fat and Dendrite Morphogenesis: The Goldilocks Effect.
Sundararajan L, Miller DM
(2018) Trends Neurosci 41: 250-252
MeSH Terms: Animals, Dendrites, Drosophila, Drosophila Proteins, Larva, Morphogenesis, Neurogenesis
Show Abstract · Added March 26, 2019
Two recent studies by Meltzer et al. and Ziegler et al. use Drosophila larvae to demonstrate that cell-autonomous regulation of lipid biosynthesis defines the complexity and function of highly branched nociceptive neurons. Their findings show that lipid biosynthesis in the neuron is fine-tuned for optimal dendrite morphology and sensitivity.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang X, Page-McCaw A
(2018) Development 145:
MeSH Terms: Animals, Animals, Genetically Modified, Bone Morphogenetic Proteins, Cadherins, Cell Count, Cell Differentiation, Cell Lineage, Cell Survival, Drosophila Proteins, Drosophila melanogaster, Female, Germ Cells, Ligands, Models, Biological, Ovary, Signal Transduction, Stem Cell Niche, Wnt Proteins
Show Abstract · Added March 20, 2018
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis.
Dear ML, Shilts J, Broadie K
(2017) Sci Signal 10:
MeSH Terms: Animals, Disease Models, Animal, Drosophila Proteins, Drosophila melanogaster, Fragile X Syndrome, Heparan Sulfate Proteoglycans, Matrix Metalloproteinase 1, Matrix Metalloproteinase 2, Neuromuscular Junction, Neurons, Presynaptic Terminals, Proteoglycans, Wnt Signaling Pathway
Show Abstract · Added December 7, 2017
Matrix metalloproteinase (MMP) functions modulate synapse formation and activity-dependent plasticity. Aberrant MMP activity is implicated in fragile X syndrome (FXS), a disease caused by the loss of the RNA-binding protein FMRP and characterized by neurological dysfunction and intellectual disability. Gene expression studies in suggest that Mmps cooperate with the heparan sulfate proteoglycan (HSPG) glypican co-receptor Dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling and that synaptogenic defects in the fly model of FXS are alleviated by either inhibition of Mmp or genetic reduction of Dlp. We used the neuromuscular junction (NMJ) glutamatergic synapse to test activity-dependent Dlp and Mmp intersections in the context of FXS. We found that rapid, activity-dependent synaptic bouton formation depended on secreted Mmp1. Acute neuronal stimulation reduced the abundance of Mmp2 but increased that of both Mmp1 and Dlp, as well as enhanced the colocalization of Dlp and Mmp1 at the synapse. Dlp function promoted Mmp1 abundance, localization, and proteolytic activity around synapses. Dlp glycosaminoglycan (GAG) chains mediated this functional interaction with Mmp1. In the FXS fly model, activity-dependent increases in Mmp1 abundance and activity were lost but were restored by reducing the amount of synaptic Dlp. The data suggest that neuronal activity-induced, HSPG-dependent Mmp regulation drives activity-dependent synaptogenesis and that this is impaired in FXS. Thus, exploring this mechanism further may reveal therapeutic targets that have the potential to restore synaptogenesis in FXS patients.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Lef1-dependent hypothalamic neurogenesis inhibits anxiety.
Xie Y, Kaufmann D, Moulton MJ, Panahi S, Gaynes JA, Watters HN, Zhou D, Xue HH, Fung CM, Levine EM, Letsou A, Brennan KC, Dorsky RI
(2017) PLoS Biol 15: e2002257
MeSH Terms: Animals, Anxiety, Behavior, Animal, Biomarkers, Drosophila Proteins, Drosophila melanogaster, Female, Gene Expression Regulation, Genes, Reporter, Humans, Hypothalamus, Lymphoid Enhancer-Binding Factor 1, Male, Mice, Knockout, Mice, Transgenic, Mutation, Nerve Tissue Proteins, Neurogenesis, Neurons, Species Specificity, Transcription Factors, Zebrafish, Zebrafish Proteins
Show Abstract · Added February 14, 2018
While innate behaviors are conserved throughout the animal kingdom, it is unknown whether common signaling pathways regulate the development of neuronal populations mediating these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and mice, although the identity of Lef1-dependent genes and neurons differ between these 2 species. We further show that zebrafish and Drosophila have common Lef1-dependent gene expression in their respective neuroendocrine organs, consistent with a conserved pathway that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebrafish and mouse show highly correlated hypothalamic expression in marmosets and humans, suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demonstrate that during evolution, a transcription factor can act through multiple mechanisms to generate a common behavioral output, and that Lef1 regulates circuit development that is fundamentally important for mediating anxiety in a wide variety of animal species.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit.
Golovin RM, Broadie K
(2016) J Neurophysiol 116: 2730-2738
MeSH Terms: Animals, Animals, Genetically Modified, Arthropod Antennae, Drosophila, Drosophila Proteins, Nerve Net, Olfactory Pathways, Smell, Synapses
Show Abstract · Added March 29, 2017
Evidence accumulating over the past 15 years soundly refutes the dogma that the Drosophila nervous system is hardwired. The preponderance of studies reveals activity-dependent neural circuit refinement driving optimization of behavioral outputs. We describe developmental, sensory input-dependent plasticity in the brain olfactory antennal lobe, which we term long-term central adaption (LTCA). LTCA is evoked by prolonged exposure to an odorant during the first week of posteclosion life, resulting in a persistently decreased response to aversive odors and an enhanced response to attractive odors. This limited window of early-use, experience-dependent plasticity represents a critical period of olfactory circuit refinement tuned by initial sensory input. Consequent behavioral adaptations have been associated with changes in the output of olfactory projection neurons to higher brain centers. Recent studies have indicated a central role for local interneuron signaling in LTCA presentation. Genetic and molecular analyses have implicated the mRNA-binding fragile X mental retardation protein and ataxin-2 regulators, Notch trans-synaptic signaling, and cAMP signal transduction as core regulatory steps driving LTCA. In this article, we discuss the structural, functional, and behavioral changes associated with LTCA and review our current understanding of the molecular pathways underlying these developmental, experience-dependent changes in the olfactory circuitry.
Copyright © 2016 the American Physiological Society.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models.
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K
(2016) Hum Mol Genet 25: 3699-3714
MeSH Terms: Animals, Disease Models, Animal, Drosophila, Drosophila Proteins, Galactokinase, Galactosemias, Glycosylation, Humans, Neuromuscular Junction, Synapses, UTP-Hexose-1-Phosphate Uridylyltransferase, Wnt Signaling Pathway
Show Abstract · Added March 29, 2017
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Wnt pathway activation by ADP-ribosylation.
Yang E, Tacchelly-Benites O, Wang Z, Randall MP, Tian A, Benchabane H, Freemantle S, Pikielny C, Tolwinski NS, Lee E, Ahmed Y
(2016) Nat Commun 7: 11430
MeSH Terms: Adenosine Diphosphate Ribose, Amino Acid Sequence, Animals, Animals, Genetically Modified, Axin Protein, Cell Line, Tumor, Drosophila Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, HEK293 Cells, Humans, Low Density Lipoprotein Receptor-Related Protein-6, Lymphocytes, Molecular Sequence Data, Proteolysis, Sequence Alignment, Tankyrases, Wnt Signaling Pathway, Wnt3A Protein, beta Catenin
Show Abstract · Added February 13, 2017
Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model.
Parkinson WM, Dookwah M, Dear ML, Gatto CL, Aoki K, Tiemeyer M, Broadie K
(2016) Dis Model Mech 9: 513-27
MeSH Terms: Animals, Congenital Disorders of Glycosylation, Disease Models, Animal, Down-Regulation, Drosophila, Drosophila Proteins, Extracellular Matrix, Glycoproteins, Glycosylation, Longevity, Movement, Neuromuscular Junction, Oligosaccharides, Phosphotransferases (Phosphomutases), Polysaccharides, Posture, Presynaptic Terminals, Signal Transduction, Synapses, Synaptic Transmission
Show Abstract · Added March 29, 2017
Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies.
© 2016. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
20 MeSH Terms