Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 269

Publication Record

Connections

Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9.
Schmidt AF, Holmes MV, Preiss D, Swerdlow DI, Denaxas S, Fatemifar G, Faraway R, Finan C, Valentine D, Fairhurst-Hunter Z, Hartwig FP, Horta BL, Hypponen E, Power C, Moldovan M, van Iperen E, Hovingh K, Demuth I, Norman K, Steinhagen-Thiessen E, Demuth J, Bertram L, Lill CM, Coassin S, Willeit J, Kiechl S, Willeit K, Mason D, Wright J, Morris R, Wanamethee G, Whincup P, Ben-Shlomo Y, McLachlan S, Price JF, Kivimaki M, Welch C, Sanchez-Galvez A, Marques-Vidal P, Nicolaides A, Panayiotou AG, Onland-Moret NC, van der Schouw YT, Matullo G, Fiorito G, Guarrera S, Sacerdote C, Wareham NJ, Langenberg C, Scott RA, Luan J, Bobak M, Malyutina S, Pająk A, Kubinova R, Tamosiunas A, Pikhart H, Grarup N, Pedersen O, Hansen T, Linneberg A, Jess T, Cooper J, Humphries SE, Brilliant M, Kitchner T, Hakonarson H, Carrell DS, McCarty CA, Lester KH, Larson EB, Crosslin DR, de Andrade M, Roden DM, Denny JC, Carty C, Hancock S, Attia J, Holliday E, Scott R, Schofield P, O'Donnell M, Yusuf S, Chong M, Pare G, van der Harst P, Said MA, Eppinga RN, Verweij N, Snieder H, Lifelines Cohort authors, Christen T, Mook-Kanamori DO, ICBP Consortium, Gustafsson S, Lind L, Ingelsson E, Pazoki R, Franco O, Hofman A, Uitterlinden A, Dehghan A, Teumer A, Baumeister S, Dörr M, Lerch MM, Völker U, Völzke H, Ward J, Pell JP, Meade T, Christophersen IE, Maitland-van der Zee AH, Baranova EV, Young R, Ford I, Campbell A, Padmanabhan S, Bots ML, Grobbee DE, Froguel P, Thuillier D, Roussel R, Bonnefond A, Cariou B, Smart M, Bao Y, Kumari M, Mahajan A, Hopewell JC, Seshadri S, METASTROKE Consortium of the ISGC, Dale C, Costa RPE, Ridker PM, Chasman DI, Reiner AP, Ritchie MD, Lange LA, Cornish AJ, Dobbins SE, Hemminki K, Kinnersley B, Sanson M, Labreche K, Simon M, Bondy M, Law P, Speedy H, Allan J, Li N, Went M, Weinhold N, Morgan G, Sonneveld P, Nilsson B, Goldschmidt H, Sud A, Engert A, Hansson M, Hemingway H, Asselbergs FW, Patel RS, Keating BJ, Sattar N, Houlston R, Casas JP, Hingorani AD
(2019) BMC Cardiovasc Disord 19: 240
MeSH Terms: Anticholesteremic Agents, Biomarkers, Brain Ischemia, Cholesterol, LDL, Down-Regulation, Dyslipidemias, Genome-Wide Association Study, Humans, Myocardial Infarction, Polymorphism, Single Nucleotide, Proprotein Convertase 9, Randomized Controlled Trials as Topic, Risk Assessment, Risk Factors, Serine Proteinase Inhibitors, Stroke, Treatment Outcome
Show Abstract · Added March 24, 2020
BACKGROUND - We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9.
METHODS - Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration.
RESULTS - The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable.
CONCLUSIONS - Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures.
Assassi S, Wang X, Chen G, Goldmuntz E, Keyes-Elstein L, Ying J, Wallace PK, Turner J, Zheng WJ, Pascual V, Varga J, Hinchcliff ME, Bellocchi C, McSweeney P, Furst DE, Nash RA, Crofford LJ, Welch B, Pinckney A, Mayes MD, Sullivan KM
(2019) Ann Rheum Dis 78: 1371-1378
MeSH Terms: Adult, Cyclophosphamide, Down-Regulation, Female, Hematopoietic Stem Cell Transplantation, Humans, Interferons, Male, Middle Aged, Multilevel Analysis, Myeloablative Agonists, Neutrophils, Randomized Controlled Trials as Topic, Scleroderma, Systemic, Transcriptome, Transplantation Conditioning, Transplantation, Autologous, Treatment Outcome, Up-Regulation
Show Abstract · Added March 25, 2020
OBJECTIVE - In the randomised scleroderma: Cyclophosphamide Or Transplantation (SCOT trial) (NCT00114530), myeloablation, followed by haematopoietic stem cell transplantation (HSCT), led to improved clinical outcomes compared with monthly cyclophosphamide (CYC) treatment in systemic sclerosis (SSc). Herein, the study aimed to determine global molecular changes at the whole blood transcript and serum protein levels ensuing from HSCT in comparison to intravenous monthly CYC in 62 participants enrolled in the SCOT study.
METHODS - Global transcript studies were performed at pretreatment baseline, 8 months and 26 months postrandomisation using Illumina HT-12 arrays. Levels of 102 proteins were measured in the concomitantly collected serum samples.
RESULTS - At the baseline visit, interferon (IFN) and neutrophil transcript modules were upregulated and the cytotoxic/NK module was downregulated in SSc compared with unaffected controls. A paired comparison of the 26 months to the baseline samples revealed a significant decrease of the IFN and neutrophil modules and an increase in the cytotoxic/NK module in the HSCT arm while there was no significant change in the CYC control arm. Also, a composite score of correlating serum proteins with IFN and neutrophil transcript modules, as well as a multilevel analysis showed significant changes in SSc molecular signatures after HSCT while similar changes were not observed in the CYC arm. Lastly, a decline in the IFN and neutrophil modules was associated with an improvement in pulmonary forced vital capacity and an increase in the cytotoxic/NK module correlated with improvement in skin score.
CONCLUSION - HSCT contrary to conventional treatment leads to a significant 'correction' in disease-related molecular signatures.
© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation.
Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, Sithu SD, Wong S, Yu L, Kocher O, Bischoff J, Srivastava S, Linton MF, Ley K, Chen H
(2019) Circ Res 124: e6-e19
MeSH Terms: Adaptor Proteins, Vesicular Transport, Animals, Apolipoproteins E, Atherosclerosis, Cells, Cultured, Down-Regulation, Gene Deletion, HEK293 Cells, Humans, Low Density Lipoprotein Receptor-Related Protein-1, Macrophages, Mice, Myeloid Cells, RAW 264.7 Cells, Receptors, LDL, Tumor Suppressor Proteins, Ubiquitination
Show Abstract · Added April 10, 2019
RATIONALE - Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question.
OBJECTIVE - We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis.
METHODS AND RESULTS - We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis.
CONCLUSIONS - Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer.
Lehman JM, Hoeksema MD, Staub J, Qian J, Harris B, Callison JC, Miao J, Shi C, Eisenberg R, Chen H, Chen SC, Massion PP
(2019) Int J Cancer 144: 1104-1114
MeSH Terms: AMP-Activated Protein Kinases, Animals, Apoptosis, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Cell Line, Tumor, Cell Proliferation, Disease Progression, Down-Regulation, Humans, Lung Neoplasms, Mice, Mice, Nude, Nerve Tissue Proteins, RNA, Messenger, Receptors, Somatostatin, Signal Transduction, Small Cell Lung Carcinoma
Show Abstract · Added March 31, 2020
Somatostatin receptor 2 (SSTR2) is overexpressed in a majority of neuroendocrine neoplasms, including small-cell lung carcinomas (SCLCs). SSTR2 was previously considered an inhibitory receptor on cell growth, but its agonists had poor clinical responses in multiple clinical trials. The role of this receptor as a potential therapeutic target in lung cancer merits further investigation. We evaluated the expression of SSTR2 in a cohort of 96 primary tumors from patients with SCLC and found 48% expressed SSTR2. Correlation analysis in both CCLE and an SCLC RNAseq cohort confirmed high-level expression and identified an association between NEUROD1 and SSTR2. There was a significant association with SSTR2 expression profile and poor clinical outcome. We tested whether SSTR2 expression might contribute to tumor progression through activation of downstream signaling pathways, using in vitro and in vivo systems and downregulated SSTR2 expression in lung cancer cells by shRNA. SSTR2 downregulation led to increased apoptosis and dramatically decreased tumor growth in vitro and in vivo in multiple cell lines with decreased AMPKα phosphorylation and increased oxidative metabolism. These results demonstrate a role for SSTR2 signaling in SCLC and suggest that SSTR2 is a poor prognostic biomarker in SCLC and potential future therapeutic signaling target.
© 2018 UICC.
0 Communities
1 Members
0 Resources
MeSH Terms
Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells.
Horvat A, Noto JM, Ramatchandirin B, Zaika E, Palrasu M, Wei J, Schneider BG, El-Rifai W, Peek RM, Zaika AI
(2018) Oncogene 37: 5054-5065
MeSH Terms: Antigens, Bacterial, Autophagy, Bacterial Proteins, Cell Line, Tumor, Down-Regulation, Epithelial Cells, Gastric Mucosa, HCT116 Cells, Helicobacter Infections, Helicobacter pylori, Humans, Signal Transduction, Stomach, Stomach Neoplasms, Tumor Suppressor Protein p14ARF, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Up-Regulation, Virulence Factors
Show Abstract · Added September 25, 2018
Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
0 Communities
1 Members
0 Resources
19 MeSH Terms
The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer.
Wilson AJ, Stubbs M, Liu P, Ruggeri B, Khabele D
(2018) Gynecol Oncol 149: 575-584
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, BRCA1 Protein, Carcinoma, Ovarian Epithelial, Cell Cycle Proteins, Cell Line, Tumor, Down-Regulation, Drug Synergism, Female, Homologous Recombination, Humans, Indoles, Mice, Mice, Inbred NOD, Mice, Nude, Mice, SCID, Neoplasms, Glandular and Epithelial, Nuclear Proteins, Organic Chemicals, Ovarian Neoplasms, Phthalazines, Piperazines, Poly(ADP-ribose) Polymerase Inhibitors, Transcription Factors, Xenograft Model Antitumor Assays
Show Abstract · Added March 3, 2020
OBJECTIVE - Homologous recombination (HR)-proficient ovarian tumors have poorer clinical outcomes and show resistance to poly ADP ribose polymerase inhibitors (PARPi). A subset of HR-proficient ovarian tumors show amplification in bromodomain and extra-terminal (BET) genes such as BRD4. We aimed to test the hypothesis that BRD4 inhibition sensitizes ovarian cancer cells to PARPi by reducing HR efficiency and increasing DNA damage.
METHODS - HR-proficient ovarian cancer cell lines (OVCAR-3, OVCAR-4, SKOV-3, UWB1.289+BRCA1) were treated with BRD4-targeting siRNA, novel (INB054329, INCB057643) and established (JQ1) BET inhibitors (BETi) and PARPi (olaparib, rucaparib). Cell growth and viability were assessed by sulforhodamine B assays in vitro, and in SKOV-3 and ovarian cancer patient-derived xenografts in vivo. DNA damage and repair (pH2AX, RAD51 and BRCA1 foci formation, and DRGFP HR reporter activity), apoptosis markers (cleaved PARP, cleaved caspase-3, Bax) and proliferation markers (PCNA, Ki67) were assessed by immunofluorescence and western blot.
RESULTS - In cultured cells, inhibition of BRD4 by siRNA or INCB054329 reduced expression and function of BRCA1 and RAD51, reduced HR reporter activity, and sensitized the cells to olaparib-induced growth inhibition, DNA damage induction and apoptosis. Synergy was observed between all BETi tested and PARPi. INCB054329 and olaparib also co-operatively inhibited xenograft tumor growth, accompanied by reduced BRCA1 expression and proliferation, and increased apoptosis and DNA damage.
CONCLUSIONS - These results provide strong rationale for using BETi to extend therapeutic efficacy of PARPi to HR-proficient ovarian tumors and could benefit a substantial number of women diagnosed with this devastating disease.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells.
Frigerio F, Flynn C, Han Y, Lyman K, Lugo JN, Ravizza T, Ghestem A, Pitsch J, Becker A, Anderson AE, Vezzani A, Chetkovich D, Bernard C
(2018) Mol Neurobiol 55: 7500-7511
MeSH Terms: Animals, Dendrites, Down-Regulation, Hippocampus, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Inflammation, Lipopolysaccharides, Male, Membrane Proteins, Microglia, Potassium Channels, Pyramidal Cells, Rats, Sprague-Dawley, Time Factors, Toll-Like Receptor 4
Show Abstract · Added April 2, 2019
Neuroinflammation is consistently found in many neurological disorders, but whether or not the inflammatory response independently affects neuronal network properties is poorly understood. Here, we report that intracerebroventricular injection of the prototypical inflammatory molecule lipopolysaccharide (LPS) in rats triggered a strong and long-lasting inflammatory response in hippocampal microglia associated with a concomitant upregulation of Toll-like receptor (TLR4) in pyramidal and hilar neurons. This, in turn, was associated with a significant reduction of the dendritic hyperpolarization-activated cyclic AMP-gated channel type 1 (HCN1) protein level while Kv4.2 channels were unaltered as assessed by western blot. Immunohistochemistry confirmed the HCN1 decrease in CA1 pyramidal neurons and showed that these changes were associated with a reduction of TRIP8b, an auxiliary subunit for HCN channels implicated in channel subcellular localization and trafficking. At the physiological level, this effect translated into a 50% decrease in HCN1-mediated currents (I) measured in the distal dendrites of hippocampal CA1 pyramidal cells. At the functional level, the band-pass-filtering properties of dendrites in the theta frequency range (4-12 Hz) and their temporal summation properties were compromised. We conclude that neuroinflammation can independently trigger an acquired channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties. By directly changing cellular function, this phenomenon may participate in the phenotypic expression of various brain diseases.
0 Communities
1 Members
0 Resources
MeSH Terms
Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers.
Williams MM, Lee L, Werfel T, Joly MMM, Hicks DJ, Rahman B, Elion D, McKernan C, Sanchez V, Estrada MV, Massarweh S, Elledge R, Duvall C, Cook RS
(2018) Cell Death Dis 9: 21
MeSH Terms: Aniline Compounds, Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Down-Regulation, Estrogen Antagonists, Female, Fulvestrant, Gene Targeting, Humans, Mice, Myeloid Cell Leukemia Sequence 1 Protein, Receptors, Estrogen, Signal Transduction, Sulfonamides, Up-Regulation, bcl-X Protein
Show Abstract · Added March 14, 2018
Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.
0 Communities
2 Members
0 Resources
18 MeSH Terms
BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis.
Parang B, Kaz AM, Barrett CW, Short SP, Ning W, Keating CE, Mittal MK, Naik RD, Washington MK, Revetta FL, Smith JJ, Chen X, Wilson KT, Brand T, Bader DM, Tansey WP, Chen R, Brentnall TA, Grady WM, Williams CS
(2017) Gut 66: 852-862
MeSH Terms: Animals, Biomarkers, Tumor, Caco-2 Cells, Carcinogenesis, Cell Adhesion Molecules, Colitis, Colitis, Ulcerative, Colon, Colonic Neoplasms, DNA Methylation, Dextran Sulfate, Down-Regulation, Female, Gene Expression Profiling, HEK293 Cells, Humans, Male, Membrane Proteins, Mice, Mice, Knockout, Muscle Proteins, Promoter Regions, Genetic, Protein Phosphatase 2, Proto-Oncogene Proteins c-myc, RNA, Messenger, Wnt Signaling Pathway
Show Abstract · Added April 15, 2017
OBJECTIVE - Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD.
DESIGN - We determined promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured mRNA levels in a tissue microarray consisting of normal colons and CAC samples. and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels.
RESULTS - mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, was underexpressed in experimental inflammatory carcinogenesis, and mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction.
CONCLUSION - Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. promoter methylation status may serve as a CAC biomarker.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
0 Communities
4 Members
0 Resources
26 MeSH Terms
c-Myc downregulation is required for preacinar to acinar maturation and pancreatic homeostasis.
Sánchez-Arévalo Lobo VJ, Fernández LC, Carrillo-de-Santa-Pau E, Richart L, Cobo I, Cendrowski J, Moreno U, Del Pozo N, Megías D, Bréant B, Wright CV, Magnuson M, Real FX
(2018) Gut 67: 707-718
MeSH Terms: Acinar Cells, Animals, Cell Differentiation, Disease Models, Animal, Down-Regulation, Homeostasis, Mice, Pancreas, Pancreatic Neoplasms, Proto-Oncogene Proteins c-myc, Transcription Factors
Show Abstract · Added February 7, 2017
BACKGROUND AND AIMS - c-Myc is highly expressed in pancreatic multipotent progenitor cells (MPC) and in pancreatic cancer. The transition from MPC to unipotent acinar progenitors is associated with c-Myc downregulation; a role for c-Myc in this process, and its possible relationship to a role in cancer, has not been established.
DESIGN - Using coimmunoprecipitation assays, we demonstrate that c-Myc and Ptf1a interact. Using reverse transcriptase qPCR, western blot and immunofluorescence, we show the erosion of the acinar programme. To analyse the genomic distribution of c-Myc and Ptf1a and the global transcriptomic profile, we used ChIP-seq and RNA-seq, respectively; validation was performed with ChIP-qPCR and RT-qPCR. Lineage-tracing experiments were used to follow the effect of c-Myc overexpression in preacinar cells on acinar differentiation.
RESULTS - c-Myc binds and represses the transcriptional activity of Ptf1a c-Myc overexpression in preacinar cells leads to a massive erosion of differentiation. In adult mice: (1) c-Myc binds to Ptf1a, and Tcf3 is downregulated; (2) Ptf1a and c-Myc display partially overlapping chromatin occupancy but do not bind the same E-boxes; (3) at the proximal promoter of genes coding for digestive enzymes, we find reduced PTF1 binding and increased levels of repressive chromatin marks and PRC2 complex components. Lineage tracing of committed acinar precursors reveals that c-Myc overexpression does not restore multipotency but allows the persistence of a preacinar-like cell population. In addition, mutant KRas can lead to c-Myc overexpression and acinar dysregulation.
CONCLUSIONS - c-Myc repression during development is crucial for the maturation of preacinar cells, and c-Myc overexpression can contribute to pancreatic carcinogenesis through the induction of a dedifferentiated state.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
0 Communities
2 Members
0 Resources
11 MeSH Terms