Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 477

Publication Record

Connections

Ventral striatal dopamine transporter availability is associated with lower trait motor impulsivity in healthy adults.
Smith CT, San Juan MD, Dang LC, Katz DT, Perkins SF, Burgess LL, Cowan RL, Manning HC, Nickels ML, Claassen DO, Samanez-Larkin GR, Zald DH
(2018) Transl Psychiatry 8: 269
MeSH Terms: Adult, Aged, Dopamine Plasma Membrane Transport Proteins, Exploratory Behavior, Female, Fluorodeoxyglucose F18, Humans, Impulsive Behavior, Male, Middle Aged, Personality, Personality Inventory, Positron-Emission Tomography, Ventral Striatum, Young Adult
Show Abstract · Added April 15, 2019
Impulsivity is a transdiagnostic feature of a range of externalizing psychiatric disorders. Preclinical work links reduced ventral striatal dopamine transporter (DAT) availability with heightened impulsivity and novelty seeking. However, there is a lack of human data investigating the relationship between DAT availability, particularly in subregions of the striatum, and the personality traits of impulsivity and novelty seeking. Here we collected PET measures of DAT availability (BP) using the tracer F-FE-PE2I in 47 healthy adult subjects and examined relations between BP in striatum, including its subregions: caudate, putamen, and ventral striatum (VS), and trait impulsivity (Barratt Impulsiveness Scale: BIS-11) and novelty seeking (Tridimensional Personality Questionnaire: TPQ-NS), controlling for age and sex. DAT BP in each striatal subregion showed nominal negative associations with total BIS-11 but not TPQ-NS. At the subscale level, VS DAT BP was significantly associated with BIS-11 motor impulsivity (e.g., taking actions without thinking) after correction for multiple comparisons. VS DAT BP explained 13.2% of the variance in motor impulsivity. Our data demonstrate that DAT availability in VS is negatively related to impulsivity and suggest a particular influence of DAT regulation of dopamine signaling in VS on acting without deliberation (BIS motor impulsivity). While needing replication, these data converge with models of ventral striatal functions that emphasize its role as a key interface linking motivation to action.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Lack of consistent sex differences in D-amphetamine-induced dopamine release measured with [F]fallypride PET.
Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK, Cowan RL, Le NT, Kessler RM, Samanez-Larkin GR, Zald DH
(2019) Psychopharmacology (Berl) 236: 581-590
MeSH Terms: Adult, Aged, Benzamides, Central Nervous System Stimulants, Dextroamphetamine, Dopamine, Female, Fluorine Radioisotopes, Humans, Male, Middle Aged, Positron-Emission Tomography, Receptors, Dopamine D2, Receptors, Dopamine D3, Sex Characteristics, Sex Factors, Ventral Striatum, Young Adult
Show Abstract · Added April 15, 2019
RATIONALE - Sex differences in the dopaminergic response to psychostimulants could have implications for drug abuse risk and other psychopathology involving the dopamine system, but human data are limited and mixed.
OBJECTIVES - Here, we sought to investigate sex differences in dopamine release after oral D-amphetamine administration.
METHODS - We used [F]fallypride positron emission tomography (PET) to measure the change in dopamine D2/3 receptor availability (%ΔBP, an index of dopamine release) between placebo and D-amphetamine sessions in two independent datasets containing a total of 39 females (on either hormonal birth control n = 18, postmenopausal n = 10, or studied in the first 10 days of their menstrual cycle n = 11) and 37 males.
RESULTS - Using both a priori anatomical regions of interest based on previous findings and voxelwise analyses, we failed to consistently detect broad sex differences in D-amphetamine-induced dopamine release. Nevertheless, there was limited evidence for greater right ventral striatal dopamine release in young adult males relative to similarly aged females, but this was not consistently observed across samples. Plasma estradiol did not correlate with dopamine release and this measure did not differ in females on and off hormonal birth control.
CONCLUSIONS - While our finding in young adults from one dataset of greater %ΔBP in males is partially consistent with a previously published study on sex differences in D-amphetamine-induced dopamine release, our data do not support the presence of consistent widespread sex differences in this measure of dopamine release.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness.
Girard TD, Exline MC, Carson SS, Hough CL, Rock P, Gong MN, Douglas IS, Malhotra A, Owens RL, Feinstein DJ, Khan B, Pisani MA, Hyzy RC, Schmidt GA, Schweickert WD, Hite RD, Bowton DL, Masica AL, Thompson JL, Chandrasekhar R, Pun BT, Strength C, Boehm LM, Jackson JC, Pandharipande PP, Brummel NE, Hughes CG, Patel MB, Stollings JL, Bernard GR, Dittus RS, Ely EW, MIND-USA Investigators
(2018) N Engl J Med 379: 2506-2516
MeSH Terms: Aged, Antipsychotic Agents, Critical Illness, Delirium, Dopamine Antagonists, Double-Blind Method, Female, Haloperidol, Humans, Kaplan-Meier Estimate, Male, Middle Aged, Piperazines, Respiratory Insufficiency, Shock, Thiazoles, Treatment Failure
Show Abstract · Added October 23, 2018
BACKGROUND - There are conflicting data on the effects of antipsychotic medications on delirium in patients in the intensive care unit (ICU).
METHODS - In a randomized, double-blind, placebo-controlled trial, we assigned patients with acute respiratory failure or shock and hypoactive or hyperactive delirium to receive intravenous boluses of haloperidol (maximum dose, 20 mg daily), ziprasidone (maximum dose, 40 mg daily), or placebo. The volume and dose of a trial drug or placebo was halved or doubled at 12-hour intervals on the basis of the presence or absence of delirium, as detected with the use of the Confusion Assessment Method for the ICU, and of side effects of the intervention. The primary end point was the number of days alive without delirium or coma during the 14-day intervention period. Secondary end points included 30-day and 90-day survival, time to freedom from mechanical ventilation, and time to ICU and hospital discharge. Safety end points included extrapyramidal symptoms and excessive sedation.
RESULTS - Written informed consent was obtained from 1183 patients or their authorized representatives. Delirium developed in 566 patients (48%), of whom 89% had hypoactive delirium and 11% had hyperactive delirium. Of the 566 patients, 184 were randomly assigned to receive placebo, 192 to receive haloperidol, and 190 to receive ziprasidone. The median duration of exposure to a trial drug or placebo was 4 days (interquartile range, 3 to 7). The median number of days alive without delirium or coma was 8.5 (95% confidence interval [CI], 5.6 to 9.9) in the placebo group, 7.9 (95% CI, 4.4 to 9.6) in the haloperidol group, and 8.7 (95% CI, 5.9 to 10.0) in the ziprasidone group (P=0.26 for overall effect across trial groups). The use of haloperidol or ziprasidone, as compared with placebo, had no significant effect on the primary end point (odds ratios, 0.88 [95% CI, 0.64 to 1.21] and 1.04 [95% CI, 0.73 to 1.48], respectively). There were no significant between-group differences with respect to the secondary end points or the frequency of extrapyramidal symptoms.
CONCLUSIONS - The use of haloperidol or ziprasidone, as compared with placebo, in patients with acute respiratory failure or shock and hypoactive or hyperactive delirium in the ICU did not significantly alter the duration of delirium. (Funded by the National Institutes of Health and the VA Geriatric Research Education and Clinical Center; MIND-USA ClinicalTrials.gov number, NCT01211522 .).
0 Communities
2 Members
0 Resources
17 MeSH Terms
Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward.
Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, Turner B, Poe A, Albaugh VL, McGuinness O, Hackett TA, Grueter BA, Abumrad NN, Flynn CR, Galli A
(2018) PLoS Biol 16: e2006682
MeSH Terms: Animals, Bariatric Surgery, Behavior, Animal, Bile, Choice Behavior, Cocaine, Dopamine, Gallbladder, Ileum, Male, Mice, Inbred C57BL, Mice, Knockout, Motor Activity, Nucleus Accumbens, Reward, Signal Transduction
Show Abstract · Added January 4, 2019
The gut-to-brain axis exhibits significant control over motivated behavior. However, mechanisms supporting this communication are poorly understood. We reveal that a gut-based bariatric surgery chronically elevates systemic bile acids and attenuates cocaine-induced elevations in accumbal dopamine. Notably, this surgery reduces reward-related behavior and psychomotor sensitization to cocaine. Utilizing a knockout mouse model, we have determined that a main mediator of these post-operative effects is the Takeda G protein-coupled bile acid receptor (TGR5). Viral restoration of TGR5 in the nucleus accumbens of TGR5 knockout animals is sufficient to restore cocaine reward, centrally localizing this TGR5-mediated modulation. These findings define TGR5 and bile acid signaling as pharmacological targets for the treatment of cocaine abuse and reveal a novel mechanism of gut-to-brain communication.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Genetic loss of GluN2B in D1-expressing cell types enhances long-term cocaine reward and potentiation of thalamo-accumbens synapses.
Joffe ME, Turner BD, Delpire E, Grueter BA
(2018) Neuropsychopharmacology 43: 2383-2389
MeSH Terms: Animals, Cocaine, Gene Deletion, Locomotion, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nucleus Accumbens, Receptors, Dopamine D1, Receptors, N-Methyl-D-Aspartate, Reward, Thalamus
Show Abstract · Added April 2, 2019
Transient upregulation of GluN2B-containing NMDA receptors (R) in the nucleus accumbens (NAc) is proposed as an intermediate to long-term AMPAR plasticity associated with persistent cocaine-related behaviors. However, cell type- and input-specific contributions of GluN2B underlying lasting actions of cocaine remain to be elucidated. We utilized GluN2B cell type-specific knockouts and optogenetics to deconstruct the role of GluN2B in cocaine-induced NAc synaptic and behavioral plasticity. While reward learning was unaffected, loss of GluN2B in D1 dopamine receptor-expressing cells (D1) led to prolonged retention of reward memory. In control mice, prefrontal cortex (PFC)-D1(+) NAc AMPAR function was unaffected by cocaine exposure, while midline thalamus (mThal)-D1(+) NAc AMPAR function was potentiated but diminished after withdrawal. In D1-GluN2B mice, the potentiation of mThal-D1(+) NAc AMPAR function persisted following withdrawal, corresponding with continued expression of cocaine reward behavior. These data suggest NAc GluN2B-containing NMDARs serve a feedback role and may weaken reward-related memories.
0 Communities
1 Members
0 Resources
MeSH Terms
Individual differences in dopamine D receptor availability correlate with reward valuation.
Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH
(2018) Cogn Affect Behav Neurosci 18: 739-747
MeSH Terms: Adult, Anticipation, Psychological, Benzamides, Brain, Brain Mapping, Cerebrovascular Circulation, Female, Fluorine Radioisotopes, Humans, Individuality, Magnetic Resonance Imaging, Male, Oxygen, Positron-Emission Tomography, Radiopharmaceuticals, Receptors, Dopamine D2, Reward
Show Abstract · Added April 15, 2019
Reward valuation, which underlies all value-based decision-making, has been associated with dopamine function in many studies of nonhuman animals, but there is relatively less direct evidence for an association in humans. Here, we measured dopamine D receptor (DRD2) availability in vivo in humans to examine relations between individual differences in dopamine receptor availability and neural activity associated with a measure of reward valuation, expected value (i.e., the product of reward magnitude and the probability of obtaining the reward). Fourteen healthy adult subjects underwent PET with [F]fallypride, a radiotracer with strong affinity for DRD2, and fMRI (on a separate day) while performing a reward valuation task. [F]fallypride binding potential, reflecting DRD2 availability, in the midbrain correlated positively with neural activity associated with expected value, specifically in the left ventral striatum/caudate. The present results provide in vivo evidence from humans showing midbrain dopamine characteristics are associated with reward valuation.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Brief exposure to obesogenic diet disrupts brain dopamine networks.
Barry RL, Byun NE, Williams JM, Siuta MA, Tantawy MN, Speed NK, Saunders C, Galli A, Niswender KD, Avison MJ
(2018) PLoS One 13: e0191299
MeSH Terms: Amphetamine, Animals, Brain, Diet, High-Fat, Dopamine, Insulin, Male, Neostriatum, Nerve Net, Obesity, Rats, Rats, Sprague-Dawley, Receptors, Dopamine D2, Signal Transduction, Time Factors
Show Abstract · Added April 11, 2019
OBJECTIVE - We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH).
METHODS - We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET).
RESULTS - We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.
CONCLUSION - These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.
0 Communities
1 Members
0 Resources
MeSH Terms
[F]fallypride characterization of striatal and extrastriatal D receptors in Parkinson's disease.
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO
(2018) Neuroimage Clin 18: 433-442
MeSH Terms: Aged, Aged, 80 and over, Benzamides, Brain Mapping, Corpus Striatum, Dopamine D2 Receptor Antagonists, Female, Fluorodeoxyglucose F18, Humans, Magnetic Resonance Imaging, Male, Parkinson Disease, Positron-Emission Tomography, Receptors, Dopamine D2
Show Abstract · Added March 21, 2018
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [F]fallypride, a high affinity D receptor ligand, to measure striatal and extrastriatal D nondisplaceable binding potential (BP). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D receptors, where reduced BP was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
0 Communities
4 Members
0 Resources
14 MeSH Terms
Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model.
Dai H, Jackson CR, Davis GL, Blakely RD, McMahon DG
(2017) J Neurodev Disord 9: 38
MeSH Terms: Animals, Attention Deficit Disorder with Hyperactivity, Biomarkers, Disease Models, Animal, Dopamine, Dopamine Plasma Membrane Transport Proteins, Electroretinography, Female, Male, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Transgenic, Retina, Vision, Ocular
Show Abstract · Added February 9, 2018
BACKGROUND - Dopamine (DA) is a critical neuromodulator in the retina. Disruption of retinal DA synthesis and signaling significantly attenuates light-adapted, electroretinogram (ERG) responses, as well as contrast sensitivity and acuity. As these measures can be detected noninvasively, they may provide opportunities to detect disease processes linked to perturbed DA signaling. Recently, we identified a rare, functional DA transporter (DAT, SLC6A3) coding substitution, Ala559Val, in subjects with attention-deficit/hyperactivity disorder (ADHD), demonstrating that DAT Val559 imparts anomalous DA efflux (ADE) with attendant physiological, pharmacological, and behavioral phenotypes. To understand the broader impact of ADE on ADHD, noninvasive measures sensitive to DAT reversal are needed.
METHODS - Here, we explored this question through ERG-based analysis of retinal light responses, as well as HPLC measurements of retinal DA in DAT Val559 mice.
RESULTS - Male mice homozygous (HOM) for the DAT Val559 variant demonstrated increased, light-adapted ERG b-wave amplitudes compared to wild type (WT) and heterozygous (HET) mice, whereas dark-adapted responses were indistinguishable across genotypes. The elevated amplitude of the photopic light responses in HOM mice could be mimicked in WT mice by applying D and D DA receptor agonists and suppressed in HOM mice by introducing D antagonist, supporting elevated retinal DA signaling arising from ADE. Following the challenge with amphetamine, WT exhibited an increase in light-adapted response amplitudes, while HOM did not. Total retinal DA content was similar across genotypes. Interestingly, female DAT Val559 HOM animals revealed no significant difference in photopic ERG responses when compared with WT and HET littermates.
CONCLUSIONS - These data reveal that noninvasive, in vivo evaluation of retinal responses to light can reveal physiological signatures of ADE, suggesting a possible approach to the segregation of neurobehavioral disorders based on the DAT-dependent control of DA signaling.
1 Communities
0 Members
0 Resources
14 MeSH Terms
Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M Muscarinic Receptor.
Moehle MS, Pancani T, Byun N, Yohn SE, Wilson GH, Dickerson JW, Remke DH, Xiang Z, Niswender CM, Wess J, Jones CK, Lindsley CW, Rook JM, Conn PJ
(2017) Neuron 96: 1358-1372.e4
MeSH Terms: Acetylcholine, Animals, Basal Ganglia, Channelrhodopsins, Choline O-Acetyltransferase, Cholinergic Agents, Cholinergic Neurons, Dopamine, Inhibitory Postsynaptic Potentials, Locomotion, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurotransmitter Agents, Oxygen, Pars Reticulata, Pedunculopontine Tegmental Nucleus, Receptor, Muscarinic M4, Receptors, Dopamine D1, Signal Transduction
Show Abstract · Added March 14, 2018
Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M) to oppose cAMP-dependent dopamine receptor subtype 1 (D) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons. This induces a tonic inhibition of transmission at direct pathway synapses and D-mediated activation of motor activity. These studies provide important new insights into the unique role of M in regulating BG function and challenge the prevailing hypothesis of the centrality of striatal ChIs in opposing dopamine regulation of BG output.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
20 MeSH Terms