Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 78

Publication Record

Connections

Fetal exposure to maternal inflammation interrupts murine intestinal development and increases susceptibility to neonatal intestinal injury.
Elgin TG, Fricke EM, Gong H, Reese J, Mills DA, Kalantera KM, Underwood MA, McElroy SJ
(2019) Dis Model Mech 12:
MeSH Terms: Animals, Animals, Newborn, Biomarkers, Cecum, Cytokines, Disease Susceptibility, Female, Fetus, Goblet Cells, Inflammation, Intestine, Small, Lipopolysaccharides, Mice, Inbred C57BL, Microbiota, Paneth Cells, Pregnancy
Show Abstract · Added July 28, 2020
Fetal exposure to chorioamnionitis can impact the outcomes of the developing fetus both at the time of birth and in the subsequent neonatal period. Infants exposed to chorioamnionitis have a higher incidence of gastrointestinal (GI) pathology, including necrotizing enterocolitis (NEC); however, the mechanism remains undefined. To simulate the fetal exposure to maternal inflammation (FEMI) induced by chorioamnionitis, pregnant mice (C57BL/6J, , or ) were injected intraperitoneally on embryonic day (E)15.5 with lipopolysaccharide (LPS; 100 µg/kg body weight). Pups were delivered at term, and reared to postnatal day (P)0, P7, P14, P28 or P56. Serum and intestinal tissue samples were collected to quantify growth, inflammatory markers, histological intestinal injury, and goblet and Paneth cells. To determine whether FEMI increased subsequent susceptibility to intestinal injury, a secondary dose of LPS (100 µg/kg body weight) was given on P5, prior to tissue harvesting on P7. FEMI had no effect on growth of the offspring or their small intestine. FEMI significantly decreased both goblet and Paneth cell numbers while simultaneously increasing serum levels of IL-1β, IL-10, KC/GRO (CXCL1 and CXCL2), TNF and IL-6. These alterations were IL-6 dependent and, importantly, increased susceptibility to LPS-induced intestinal injury later in life. Our data show that FEMI impairs normal intestinal development by decreasing components of innate immunity and simultaneously increasing markers of inflammation. These changes increase susceptibility to intestinal injury later in life and provide novel mechanistic data to potentially explain why preterm infants exposed to chorioamnionitis prior to birth have a higher incidence of NEC and other GI disorders.
© 2019. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
Geospatial analyses identify regional hot spots of diffuse gastric cancer in rural Central America.
Dominguez RL, Cherry CB, Estevez-Ordonez D, Mera R, Escamilla V, Pawlita M, Waterboer T, Wilson KT, Peek RM, Tavera G, Williams SM, Gulley ML, Emch M, Morgan DR
(2019) BMC Cancer 19: 545
MeSH Terms: Aged, Case-Control Studies, Central America, Disease Susceptibility, Female, Geography, Helicobacter Infections, Helicobacter pylori, Humans, Male, Middle Aged, Risk Assessment, Risk Factors, Rural Health, Spatial Analysis, Stomach Neoplasms
Show Abstract · Added June 10, 2019
BACKGROUND - Geospatial technology has facilitated the discovery of disease distributions and etiology and helped target prevention programs. Globally, gastric cancer is the leading infection-associated cancer, and third leading cause of cancer mortality worldwide, with marked geographic variation. Central and South America have a significant burden, particularly in the mountainous regions. In the context of an ongoing population-based case-control study in Central America, our aim was to examine the spatial epidemiology of gastric cancer subtypes and H. pylori virulence factors.
METHODS - Patients diagnosed with gastric cancer from 2002 to 2013 in western Honduras were identified in the prospective gastric cancer registry at the principal district hospital. Diagnosis was based on endoscopy and confirmatory histopathology. Geospatial methods were applied using the ArcGIS v10.3.1 and SaTScan v9.4.2 platforms to examine regional distributions of the gastric cancer histologic subtypes (Lauren classification), and the H. pylori CagA virulence factor. Getis-Ord-Gi hot spot and Discrete Poisson SaTScan statistics, respectively, were used to explore spatial clustering at the village level (30-50 rural households), with standardization by each village's population. H. pylori and CagA serologic status was determined using the novel H. pylori multiplex assay (DKFZ, Germany).
RESULTS - Three hundred seventy-eight incident cases met the inclusion criteria (mean age 63.7, male 66.3%). Areas of higher gastric cancer incidence were identified. Significant spatial clustering of diffuse histology adenocarcinoma was revealed both by the Getis-Ord-GI* hot spot analysis (P-value < 0.0015; range 0.00003-0.0014; 99%CI), and by the SaTScan statistic (P-value < 0.006; range 0.0026-0.0054). The intestinal subtype was randomly distributed. H. pylori CagA had significant spatial clustering only in association with the diffuse histology cancer hot spot (Getis-Ord-Gi* P value ≤0.001; range 0.0001-0.0010; SaTScan statistic P value 0.0085). In the diffuse gastric cancer hot spot, the lowest age quartile range was 21-46 years, significantly lower than the intestinal cancers (P = 0.024).
CONCLUSIONS - Geospatial methods have identified a significant cluster of incident diffuse type adenocarcinoma cases in rural Central America, suggest of a germline genetic association. Further genomic and geospatial analyses to identify potential spatial patterns of genetic, bacterial, and environmental risk factors may be informative.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Clinical and Genome-wide Analysis of Cisplatin-induced Tinnitus Implicates Novel Ototoxic Mechanisms.
El Charif O, Mapes B, Trendowski MR, Wheeler HE, Wing C, Dinh PC, Frisina RD, Feldman DR, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Mushiroda T, Kubo M, Gamazon ER, Cox NJ, Huddart R, Ardeshir-Rouhani-Fard S, Monahan P, Fossa SD, Einhorn LH, Travis LB, Dolan ME
(2019) Clin Cancer Res 25: 4104-4116
MeSH Terms: Adult, Aged, Antineoplastic Agents, Case-Control Studies, Cell Line, Tumor, Cell Survival, Cisplatin, Disease Susceptibility, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Middle Aged, Ototoxicity, Polymorphism, Single Nucleotide, Risk Factors, Self Report, Tinnitus, Young Adult
Show Abstract · Added July 17, 2019
PURPOSE - Cisplatin, a commonly used chemotherapeutic, results in tinnitus, the phantom perception of sound. Our purpose was to identify the clinical and genetic determinants of tinnitus among testicular cancer survivors (TCS) following cisplatin-based chemotherapy.
EXPERIMENTAL DESIGN - TCS ( = 762) were dichotomized to cases (moderate/severe tinnitus; = 154) and controls (none; = 608). Logistic regression was used to evaluate associations with comorbidities and SNP dosages in genome-wide association study (GWAS) following quality control and imputation (covariates: age, noise exposure, cisplatin dose, genetic principal components). Pathway over-representation tests and functional studies in mouse auditory cells were performed.
RESULTS - Cisplatin-induced tinnitus (CisIT) significantly associated with age at diagnosis ( = 0.007) and cumulative cisplatin dose ( = 0.007). CisIT prevalence was not significantly greater in 400 mg/m-treated TCS compared with 300 ( = 0.41), but doses >400 mg/m (median 580, range 402-828) increased risk by 2.61-fold ( < 0.0001). CisIT cases had worse hearing at each frequency (0.25-12 kHz, < 0.0001), and reported more vertigo (OR = 6.47; < 0.0001) and problems hearing in a crowd (OR = 8.22; < 0.0001) than controls. Cases reported poorer health ( < 0.0001) and greater psychotropic medication use (OR = 2.4; = 0.003). GWAS suggested a variant near (rs7606353, = 2 × 10) and eQTLs were significantly enriched independently of that SNP ( = 0.018). overexpression in HEI-OC1, a mouse auditory cell line, resulted in resistance to cisplatin-induced cytotoxicity. Pathway analysis implicated potassium ion transport (q = 0.007).
CONCLUSIONS - CisIT associated with several neuro-otological symptoms, increased use of psychotropic medication, and poorer health. , expressed in the cochlear lateral wall, was implicated as protective. Future studies should investigate otoprotective targets in supporting cochlear cells.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Location-dependent maintenance of intrinsic susceptibility to mTORC1-driven tumorigenesis.
Rushing GV, Brockman AA, Bollig MK, Leelatian N, Mobley BC, Irish JM, Ess KC, Fu C, Ihrie RA
(2019) Life Sci Alliance 2:
MeSH Terms: Adolescent, Animals, Astrocytoma, Carcinogenesis, Cells, Cultured, Child, Child, Preschool, Disease Susceptibility, Female, Humans, Lateral Ventricles, Male, Mechanistic Target of Rapamycin Complex 1, Mice, Mice, Inbred C57BL, Neural Stem Cells, Signal Transduction, Thyroid Nuclear Factor 1, Tuberous Sclerosis
Show Abstract · Added March 27, 2019
Neural stem/progenitor cells (NSPCs) of the ventricular-subventricular zone (V-SVZ) are candidate cells of origin for many brain tumors. However, whether NSPCs in different locations within the V-SVZ differ in susceptibility to tumorigenic mutations is unknown. Here, single-cell measurements of signal transduction intermediates in the mechanistic target of rapamycin complex 1 (mTORC1) pathway reveal that ventral NSPCs have higher levels of signaling than dorsal NSPCs These features are linked with differences in mTORC1-driven disease severity: introduction of a pathognomonic mutation only results in formation of tumor-like masses from the ventral V-SVZ. We propose a direct link between location-dependent intrinsic growth properties imbued by mTORC1 and predisposition to tumor development.
© 2019 Rushing et al.
2 Communities
2 Members
0 Resources
19 MeSH Terms
Biological Consequences of MHC-II Expression by Tumor Cells in Cancer.
Axelrod ML, Cook RS, Johnson DB, Balko JM
(2019) Clin Cancer Res 25: 2392-2402
MeSH Terms: Animals, Antigen Presentation, Antigen-Presenting Cells, Biomarkers, CD4-Positive T-Lymphocytes, Disease Management, Disease Models, Animal, Disease Susceptibility, Gene Expression, Gene Expression Regulation, Neoplastic, Histocompatibility Antigens Class I, Histocompatibility Antigens Class II, Humans, Immunotherapy, Neoplasms, Signal Transduction
Show Abstract · Added April 15, 2019
Immunotherapy has emerged as a key pillar of cancer treatment. To build upon the recent successes of immunotherapy, intense research efforts are aimed at a molecular understanding of antitumor immune responses, identification of biomarkers of immunotherapy response and resistance, and novel strategies to circumvent resistance. These studies are revealing new insight into the intricacies of tumor cell recognition by the immune system, in large part through MHCs. Although tumor cells widely express MHC-I, a subset of tumors originating from a variety of tissues also express MHC-II, an antigen-presenting complex traditionally associated with professional antigen-presenting cells. MHC-II is critical for antigen presentation to CD4 T lymphocytes, whose role in antitumor immunity is becoming increasingly appreciated. Accumulating evidence demonstrates that tumor-specific MHC-II associates with favorable outcomes in patients with cancer, including those treated with immunotherapies, and with tumor rejection in murine models. Herein, we will review current research regarding tumor-enriched MHC-II expression and regulation in a range of human tumors and murine models, and the possible therapeutic applications of tumor-specific MHC-II.
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Nonsteroidal Anti-inflammatory Drug Interaction with Prostacyclin Synthase Protects from Miscarriage.
Velez Edwards DR, Edwards TL, Bray MJ, Torstenson E, Jones S, Shrubsole MJ, Muff HJ, Hartmann KE
(2017) Sci Rep 7: 9874
MeSH Terms: Abortion, Spontaneous, Adult, Alleles, Anti-Inflammatory Agents, Non-Steroidal, Cytochrome P-450 Enzyme System, Disease Susceptibility, Female, Genotype, Humans, Intramolecular Oxidoreductases, Odds Ratio, Polymorphism, Single Nucleotide, Pregnancy, Risk Factors
Show Abstract · Added February 21, 2019
This study evaluates the relationship between single nucleotide polymorphisms (SNPs) in nonsteroidal anti-inflammatory drug (NSAID) metabolism and related pathways and spontaneous abortion (SAB, gestation < 20 weeks) risk. Women were enrolled in Right from the Start (2004-2010) prospective cohort. Periconceptional NSAIDs reported through the sixth week of pregnancy were obtained from study interviews. We evaluated 201 SNPs in 600 European American women. Interaction analyses between NSAID use and SNPs were conducted using logistic regression, adjusted for confounders. We also evaluated prostaglandin E2 urinary metabolite (PGE-M) in an independent population for association with SNPs using linear regression. NSAID use was reported by 63% of cases and 62% controls. The most significant interaction was at prostacyclin synthase (PGIS) rs5602 (OR = 0.34, 95% CI 0.19-0.60, p = 2.45 × 10) and was significant after a Bonferroni correction. NSAID users were protected from SAB (OR = 0.78, 95% CI 0.56-1.10), while non-NSAID users were at increased risk (OR = 2.11, 95% CI 1.35-3.29) in rs5602 stratified analyses. rs5602 also associated with increased PGE-M levels (Beta = 0.09, 95% CI -0.002-0.19, p = 0.033). We identified an association between a PGIS variant and SAB risk that is modified by NSAIDs use during pregnancy and directly associated with increased levels of PGE metabolites. This suggests the potential use of genetic information to guide pharmaceutical intervention to prevent adverse pregnancy outcomes.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles.
Pavlos R, McKinnon EJ, Ostrov DA, Peters B, Buus S, Koelle D, Chopra A, Schutte R, Rive C, Redwood A, Restrepo S, Bracey A, Kaever T, Myers P, Speers E, Malaker SA, Shabanowitz J, Jing Y, Gaudieri S, Hunt DF, Carrington M, Haas DW, Mallal S, Phillips EJ
(2017) Sci Rep 7: 8653
MeSH Terms: Alleles, Anti-HIV Agents, Case-Control Studies, Disease Susceptibility, Drug Hypersensitivity, Histocompatibility Antigens Class I, Histocompatibility Antigens Class II, Humans, Nevirapine, Odds Ratio, Peptides, Protein Binding, Risk Assessment, T-Lymphocytes
Show Abstract · Added March 30, 2020
Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which share the HLA-DRB1-P4 pocket is also observed. In contrast, NVP HSR protection is afforded by a cluster of HLA-B alleles defined by a characteristic peptide binding groove B pocket. The results suggest drug-specific interactions within the antigen binding cleft can be shared across HLA molecules with similar binding pockets. We thereby provide an explanation for multiple HLA associations with cutaneous NVP HSR and advance insight into its pathogenic mechanisms.
0 Communities
1 Members
0 Resources
MeSH Terms
Pyridine Dinucleotides from Molecules to Man.
Fessel JP, Oldham WM
(2018) Antioxid Redox Signal 28: 180-212
MeSH Terms: ADP-ribosyl Cyclase 1, Adenosine Triphosphate, Biosynthetic Pathways, Catalysis, Disease Susceptibility, Energy Metabolism, Homeostasis, Humans, Hydrolysis, Intracellular Space, Male, Mitochondria, NAD, NADP, NADPH Oxidases, Nitric Oxide Synthase, Oxidation-Reduction, Pyridines, Reactive Oxygen Species, Stress, Physiological
Show Abstract · Added March 14, 2018
SIGNIFICANCE - Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease.
CRITICAL ISSUES - Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive.
FUTURE DIRECTIONS - As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.
Bluett RJ, Báldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, Baechle J, Marcus DJ, Mardam-Bey R, Shonesy BC, Uddin MJ, Marnett LJ, Mackie K, Colbran RJ, Winder DG, Patel S
(2017) Nat Commun 8: 14782
MeSH Terms: Amygdala, Animals, Anxiety, Arachidonic Acids, Behavior, Animal, Benzodioxoles, Disease Susceptibility, Dronabinol, Endocannabinoids, Excitatory Postsynaptic Potentials, Female, Glutamates, Glycerides, Hippocampus, Lipoprotein Lipase, Male, Mice, Inbred ICR, Mice, Knockout, Phenotype, Piperidines, Resilience, Psychological, Signal Transduction, Stress, Psychological, Synapses
Show Abstract · Added April 7, 2017
Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.
0 Communities
4 Members
0 Resources
24 MeSH Terms
Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome.
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS
(2016) JCI Insight 1: e88947
MeSH Terms: Animals, Bleomycin, Chemokine CCL2, Disease Susceptibility, Epithelial Cells, Female, Hermanski-Pudlak Syndrome, Macrophages, Male, Mice, Mice, Inbred C57BL, Protein-Serine-Threonine Kinases, Pulmonary Alveoli, Pulmonary Fibrosis, Receptor, Transforming Growth Factor-beta Type II, Receptors, CCR2, Receptors, Transforming Growth Factor beta, Transforming Growth Factor beta
Show Abstract · Added March 29, 2017
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
1 Communities
2 Members
0 Resources
18 MeSH Terms