Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 72

Publication Record

Connections

Nonsteroidal Anti-inflammatory Drug Interaction with Prostacyclin Synthase Protects from Miscarriage.
Velez Edwards DR, Edwards TL, Bray MJ, Torstenson E, Jones S, Shrubsole MJ, Muff HJ, Hartmann KE
(2017) Sci Rep 7: 9874
MeSH Terms: Abortion, Spontaneous, Adult, Alleles, Anti-Inflammatory Agents, Non-Steroidal, Cytochrome P-450 Enzyme System, Disease Susceptibility, Female, Genotype, Humans, Intramolecular Oxidoreductases, Odds Ratio, Polymorphism, Single Nucleotide, Pregnancy, Risk Factors
Show Abstract · Added February 21, 2019
This study evaluates the relationship between single nucleotide polymorphisms (SNPs) in nonsteroidal anti-inflammatory drug (NSAID) metabolism and related pathways and spontaneous abortion (SAB, gestation < 20 weeks) risk. Women were enrolled in Right from the Start (2004-2010) prospective cohort. Periconceptional NSAIDs reported through the sixth week of pregnancy were obtained from study interviews. We evaluated 201 SNPs in 600 European American women. Interaction analyses between NSAID use and SNPs were conducted using logistic regression, adjusted for confounders. We also evaluated prostaglandin E2 urinary metabolite (PGE-M) in an independent population for association with SNPs using linear regression. NSAID use was reported by 63% of cases and 62% controls. The most significant interaction was at prostacyclin synthase (PGIS) rs5602 (OR = 0.34, 95% CI 0.19-0.60, p = 2.45 × 10) and was significant after a Bonferroni correction. NSAID users were protected from SAB (OR = 0.78, 95% CI 0.56-1.10), while non-NSAID users were at increased risk (OR = 2.11, 95% CI 1.35-3.29) in rs5602 stratified analyses. rs5602 also associated with increased PGE-M levels (Beta = 0.09, 95% CI -0.002-0.19, p = 0.033). We identified an association between a PGIS variant and SAB risk that is modified by NSAIDs use during pregnancy and directly associated with increased levels of PGE metabolites. This suggests the potential use of genetic information to guide pharmaceutical intervention to prevent adverse pregnancy outcomes.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Pyridine Dinucleotides from Molecules to Man.
Fessel JP, Oldham WM
(2018) Antioxid Redox Signal 28: 180-212
MeSH Terms: ADP-ribosyl Cyclase 1, Adenosine Triphosphate, Biosynthetic Pathways, Catalysis, Disease Susceptibility, Energy Metabolism, Homeostasis, Humans, Hydrolysis, Intracellular Space, Male, Mitochondria, NAD, NADP, NADPH Oxidases, Nitric Oxide Synthase, Oxidation-Reduction, Pyridines, Reactive Oxygen Species, Stress, Physiological
Show Abstract · Added March 14, 2018
SIGNIFICANCE - Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease.
CRITICAL ISSUES - Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive.
FUTURE DIRECTIONS - As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.
Bluett RJ, Báldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, Baechle J, Marcus DJ, Mardam-Bey R, Shonesy BC, Uddin MJ, Marnett LJ, Mackie K, Colbran RJ, Winder DG, Patel S
(2017) Nat Commun 8: 14782
MeSH Terms: Amygdala, Animals, Anxiety, Arachidonic Acids, Behavior, Animal, Benzodioxoles, Disease Susceptibility, Dronabinol, Endocannabinoids, Excitatory Postsynaptic Potentials, Female, Glutamates, Glycerides, Hippocampus, Lipoprotein Lipase, Male, Mice, Inbred ICR, Mice, Knockout, Phenotype, Piperidines, Resilience, Psychological, Signal Transduction, Stress, Psychological, Synapses
Show Abstract · Added April 7, 2017
Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.
0 Communities
4 Members
0 Resources
24 MeSH Terms
Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome.
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS
(2016) JCI Insight 1: e88947
MeSH Terms: Animals, Bleomycin, Chemokine CCL2, Disease Susceptibility, Epithelial Cells, Female, Hermanski-Pudlak Syndrome, Macrophages, Male, Mice, Mice, Inbred C57BL, Protein-Serine-Threonine Kinases, Pulmonary Alveoli, Pulmonary Fibrosis, Receptor, Transforming Growth Factor-beta Type II, Receptors, CCR2, Receptors, Transforming Growth Factor beta, Transforming Growth Factor beta
Show Abstract · Added March 29, 2017
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection.
Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y, Ware LB, Washington MK, Chazin WJ, Caprioli RM, Skaar EP
(2016) Nat Med 22: 1330-1334
MeSH Terms: Adult, Aged, Aged, 80 and over, Animals, Anti-Bacterial Agents, Bacterial Proteins, Bacterial Toxins, Calgranulin B, Cecum, Child, Clostridium Infections, Clostridium difficile, Cohort Studies, Colon, Cytokines, Diet, Disease Models, Animal, Disease Susceptibility, Enterotoxins, Female, Gastrointestinal Microbiome, Humans, Male, Mass Spectrometry, Mice, Mice, Knockout, Middle Aged, Polymerase Chain Reaction, Prospective Studies, RNA, Ribosomal, 16S, Trace Elements, Young Adult, Zinc
Show Abstract · Added April 8, 2017
Clostridium difficile is the most commonly reported nosocomial pathogen in the United States and is an urgent public health concern worldwide. Over the past decade, incidence, severity and costs associated with C. difficile infection (CDI) have increased dramatically. CDI is most commonly initiated by antibiotic-mediated disruption of the gut microbiota; however, non-antibiotic-associated CDI cases are well documented and on the rise. This suggests that unexplored environmental, nutrient and host factors probably influence CDI. Here we show that excess dietary zinc (Zn) substantially alters the gut microbiota and, in turn, reduces the minimum amount of antibiotics needed to confer susceptibility to CDI. In mice colonized with C. difficile, excess dietary Zn severely exacerbated C. difficile-associated disease by increasing toxin activity and altering the host immune response. In addition, we show that the Zn-binding S100 protein calprotectin has antimicrobial effects against C. difficile and is an essential component of the innate immune response to CDI. Taken together, these data suggest that nutrient Zn levels have a key role in determining susceptibility to CDI and severity of disease, and that calprotectin-mediated metal limitation is an important factor in the host immune response to C. difficile.
1 Communities
4 Members
0 Resources
33 MeSH Terms
Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions.
Zhang LS, Davies SS
(2016) Genome Med 8: 46
MeSH Terms: Animals, Diet, Disease Susceptibility, Energy Metabolism, Fatty Acids, Volatile, Gastrointestinal Microbiome, Gastrointestinal Tract, Homeostasis, Humans, Indoles, Metabolome, Metabolomics, Methylamines, Microbiota, Translational Medical Research, Tryptophan, Tyrosine
Show Abstract · Added May 6, 2016
Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.
2 Communities
2 Members
0 Resources
17 MeSH Terms
Cardiology Patient Page. ABCDE Steps for Heart and Vascular Wellness Following a Prostate Cancer Diagnosis.
Guan J, Khambhati J, Jones LW, Morgans A, Allaf M, Penson DF, Moslehi J
(2015) Circulation 132: e218-20
MeSH Terms: Adenocarcinoma, Androgen Antagonists, Androgens, Antineoplastic Agents, Hormonal, Cardiovascular Diseases, Comorbidity, Diabetes Mellitus, Diet, Disease Susceptibility, Exercise, Health Promotion, Humans, Hypercholesterolemia, Hypertension, Life Style, Male, Neoplasms, Hormone-Dependent, Prostatic Neoplasms, Risk Factors, Smoking Cessation, Survivors
Added February 4, 2016
0 Communities
2 Members
0 Resources
21 MeSH Terms
Glypican-5 Increases Susceptibility to Nephrotic Damage in Diabetic Kidney.
Okamoto K, Honda K, Doi K, Ishizu T, Katagiri D, Wada T, Tomita K, Ohtake T, Kaneko T, Kobayashi S, Nangaku M, Tokunaga K, Noiri E
(2015) Am J Pathol 185: 1889-98
MeSH Terms: Adult, Aged, Animals, Cell Line, Diabetes Mellitus, Type 2, Diabetic Nephropathies, Disease Susceptibility, Female, Fibroblast Growth Factor 2, Glomerular Mesangium, Glypicans, Humans, Hyperglycemia, Kidney, Kidney Failure, Chronic, Male, Mesangial Cells, Mice, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Nephrotic Syndrome, Podocytes, Proteinuria, Rats
Show Abstract · Added February 11, 2016
Type 2 diabetes mellitus is a leading health issue worldwide. Among cases of diabetes mellitus nephropathy (DN), the major complication of type 2 diabetes mellitus, the nephrotic phenotype is often intractable to clinical intervention and demonstrates the rapid decline of renal function to end-stage renal disease. We recently identified the gene for glypican-5 (GPC5), a cell-surface heparan sulfate proteoglycan, as conferring susceptibility for acquired nephrotic syndrome and additionally identified an association through a genome-wide association study between a variant in GPC5 and DN of type 2 diabetes mellitus. In vivo and in vitro data showed a progressive increase of GPC5 in type 2 DN along with severity; the excess was derived from glomerular mesangial cells. In this study, diabetic kidney showed that accumulation of fibroblast growth factor (Fgf)2 strikingly induced progressive proteinuria that was avoided in Gpc5 knockdown mice. The efficacy of Gpc5 inhibition was exerted through expression of the Fgf receptors 3 and 4 provoked in the diabetic kidney attributively. Extraglomerular Fgf2 was pathogenic in DN, and the deterrence of Gpc5 effectively inhibited the glomerular accumulation of Fgf2, the subsequent increase of mesangial extracellular matrix, and the podocytes' small GTPase activity. These findings elucidate the pivotal role of GPC5, identified as a susceptible gene in the genome-wide association study, in hyperglycemia-induced glomerulopathy.
Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Phage-display-guided nanocarrier targeting to atheroprone vasculature.
Hofmeister LH, Lee SH, Norlander AE, Montaniel KR, Chen W, Harrison DG, Sung HJ
(2015) ACS Nano 9: 4435-46
MeSH Terms: Amino Acid Sequence, Animals, Apolipoproteins E, Atherosclerosis, Biopterin, Carotid Arteries, Disease Susceptibility, Drug Carriers, Male, Mice, Molecular Sequence Data, Nanomedicine, Nanostructures, Oligopeptides, Peptide Library
Show Abstract · Added March 31, 2015
In regions of the circulation where vessels are straight and unbranched, blood flow is laminar and unidirectional. In contrast, at sites of curvature, branch points, and regions distal to stenoses, blood flow becomes disturbed. Atherosclerosis preferentially develops in these regions of disturbed blood flow. Current therapies for atherosclerosis are systemic and may not sufficiently target these atheroprone regions. In this study, we sought to leverage the alterations on the luminal surface of endothelial cells caused by this atheroprone flow for nanocarrier targeting. In vivo phage display was used to discover unique peptides that selectively bind to atheroprone regions in the mouse partial carotid artery ligation model. The peptide GSPREYTSYMPH (PREY) was found to bind 4.5-fold more avidly to the region of disturbed flow and was used to form targeted liposomes. When administered intravenously, PREY-targeted liposomes preferentially accumulated in endothelial cells in the partially occluded carotid artery and other areas of disturbed flow. Proteomic analysis and immunoblotting indicated that fibronectin and Filamin-A were preferentially bound by PREY nanocarriers in vessels with disturbed flow. In additional experiments, PREY nanocarriers were used therapeutically to deliver the nitric oxide synthase cofactor tetrahydrobiopterin (BH4), which we have previously shown to be deficient in regions of disturbed flow. This intervention increased vascular BH4 and reduced vascular superoxide in the partially ligated artery in wild-type mice and reduced plaque burden in the partially ligated left carotid artery of fat fed atheroprone mice (ApoE(-/-)). Targeting atheroprone sites of the circulation with functionalized nanocarriers provides a promising approach for prevention of early atherosclerotic lesion formation.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Human and Helicobacter pylori coevolution shapes the risk of gastric disease.
Kodaman N, Pazos A, Schneider BG, Piazuelo MB, Mera R, Sobota RS, Sicinschi LA, Shaffer CL, Romero-Gallo J, de Sablet T, Harder RH, Bravo LE, Peek RM, Wilson KT, Cover TL, Williams SM, Correa P
(2014) Proc Natl Acad Sci U S A 111: 1455-60
MeSH Terms: Adult, Aged, Disease Susceptibility, Evolution, Molecular, Helicobacter Infections, Helicobacter pylori, Humans, Middle Aged, Stomach Diseases
Show Abstract · Added March 5, 2014
Helicobacter pylori is the principal cause of gastric cancer, the second leading cause of cancer mortality worldwide. However, H. pylori prevalence generally does not predict cancer incidence. To determine whether coevolution between host and pathogen influences disease risk, we examined the association between the severity of gastric lesions and patterns of genomic variation in matched human and H. pylori samples. Patients were recruited from two geographically distinct Colombian populations with significantly different incidences of gastric cancer, but virtually identical prevalence of H. pylori infection. All H. pylori isolates contained the genetic signatures of multiple ancestries, with an ancestral African cluster predominating in a low-risk, coastal population and a European cluster in a high-risk, mountain population. The human ancestry of the biopsied individuals also varied with geography, with mostly African ancestry in the coastal region (58%), and mostly Amerindian ancestry in the mountain region (67%). The interaction between the host and pathogen ancestries completely accounted for the difference in the severity of gastric lesions in the two regions of Colombia. In particular, African H. pylori ancestry was relatively benign in humans of African ancestry but was deleterious in individuals with substantial Amerindian ancestry. Thus, coevolution likely modulated disease risk, and the disruption of coevolved human and H. pylori genomes can explain the high incidence of gastric disease in the mountain population.
0 Communities
5 Members
0 Resources
9 MeSH Terms