Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1377

Publication Record

Connections

A Murine Model of Fetal Exposure to Maternal Inflammation to Study the Effects of Acute Chorioamnionitis on Newborn Intestinal Development.
Juber BA, Elgin TG, Fricke EM, Gong H, Reese J, McElroy SJ
(2020) J Vis Exp :
MeSH Terms: Acute Disease, Animals, Chorioamnionitis, Cytokines, Disease Models, Animal, Female, Fetus, Humans, Infant, Newborn, Intestines, Mice, Mothers, Paneth Cells, Placenta, Pregnancy, Prenatal Exposure Delayed Effects
Show Abstract · Added January 7, 2021
Chorioamnionitis is a common precipitant of preterm birth and is associated with many of the morbidities of prematurity, including necrotizing enterocolitis (NEC). However, a mechanistic link between these two conditions remains yet to be discovered. We have adopted a murine model of chorioamnionitis involving lipopolysaccharide (LPS)-induced fetal exposure to maternal inflammation (FEMI). This model of FEMI induces a sterile maternal, placental, and fetal inflammatory cascade, which is also present in many cases of clinical chorioamnionitis. Although models exist that utilize live bacteria and more accurately mimic the pathophysiology of an ascending infection resulting in chorioamnionitis, these methods may cause indirect effects on development of the immature intestinal tract and the associated developing microbiome. Using this protocol, we have demonstrated that LPS-induced FEMI results in a dose-dependent increase in pregnancy loss and preterm birth, as well as disruption of normal intestinal development in offspring. Further, we have demonstrated that FEMI significantly increases intestinal injury and serum cytokines in offspring, while simultaneously decreasing goblet and Paneth cells, both of which provide a first line of innate immunity against intestinal inflammation. Although a similar model of LPS-induced FEMI has been used to model the association between chorioamnionitis and subsequent abnormalities of the central nervous system, to our knowledge, this protocol is the first to attempt to elucidate a mechanistic link between chorioamnionitis and later perturbations in intestinal development as a potential link between chorioamnionitis and NEC.
0 Communities
1 Members
0 Resources
MeSH Terms
Osmotic Response of Dorsal Root Ganglion Neurons Expressing Wild-Type and Mutant KCC3 Transporters.
Flores B, Delpire E
(2020) Cell Physiol Biochem 54: 577-590
MeSH Terms: Animals, Axons, Cell Size, Corpus Callosum, Disease Models, Animal, Gain of Function Mutation, Ganglia, Spinal, Hereditary Sensory and Autonomic Neuropathies, Homeostasis, Humans, Membrane Transport Proteins, Mice, Mice, Knockout, Neurons, Osmotic Pressure, Symporters
Show Abstract · Added June 30, 2020
BACKGROUND/AIMS - Loss-of-Function (LOF) of the potassium chloride cotransporter 3 (KCC3) results in hereditary sensorimotor neuropathy with Agenesis of the Corpus Callosum (HSMN/ACC). Our KCC3 knockout mouse recapitulated axonal swelling and tissue vacuolization observed in autopsies of individuals with HSMN/ACC. We previously documented the first human case of a KCC3 gain-of-function (GOF) in which the patient also exhibited severe peripheral neuropathy. Furthermore, the GOF mouse model exhibited shrunken axons implicating the cotransporter in cell volume homeostasis. It is unclear how both KCC3 LOF and GOF lead to peripheral neuropathy. Thus, we sought to study differences in cell volume regulation of dorsal root ganglion neurons isolated from different mouse lines.
METHODS - Using wide-field microscopy, we measured calcein fluorescence intensity through pinhole measurements at the center of cells and compared cell swelling and cell volume regulation/recovery of wild-type, LOF, and GOF dorsal root ganglia neurons, as well as wild-type neurons treated with a KCC-specific inhibitor.
RESULTS - In contrast to control neurons that swell and volume regulate under a hypotonic challenge, neurons lacking KCC3 swell but fail to volume regulate. Similar data were observed in wild-type neurons treated with the KCC inhibitor. We also show that sensory neurons expressing a constitutively active KCC3 exhibited a blunted swelling phase compared to wild-type neurons, questioning the purely osmotic nature of the swelling phase.
CONCLUSION - These findings demonstrate the integral role of KCC3 in cell volume homeostasis and support the idea that cell volume homeostasis is critical to the health of peripheral nerves.
© Copyright by the Author(s). Published by Cell Physiol Biochem Press.
1 Communities
0 Members
0 Resources
16 MeSH Terms
N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder.
Allen MR, Wallace J, McNerney E, Nyman J, Avin K, Chen N, Moe S
(2020) PLoS One 15: e0230379
MeSH Terms: Acetylcysteine, Animals, Antioxidants, Caseins, Chronic Kidney Disease-Mineral and Bone Disorder, Disease Models, Animal, Disease Progression, Glycation End Products, Advanced, Humans, Kidney, Lipid Peroxidation, Male, Mutation, Nuclear Proteins, Oxidative Stress, Parathyroid Hormone, Rats, Tibia, X-Ray Microtomography
Show Abstract · Added March 25, 2020
Individuals with chronic kidney disease have elevated levels of oxidative stress and are at a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs), which accumulate in bone and compromise mechanical properties, are known to be driven in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine (NAC) on reducing oxidative stress and improving various bone parameters, most specifically mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP) from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assessments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE levels in the bone. CKD rats had the expected phenotype that included low kidney function, elevated parathyroid hormone, higher cortical porosity, and compromised mechanical properties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxidation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with NAC although this did not translate to a benefit in bone mechanical properties. In conclusion, NAC failed to significantly improve bone architecture/geometry/mechanical properties in our rat model of progressive CKD.
0 Communities
1 Members
0 Resources
19 MeSH Terms
infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease.
Mileto SJ, Jardé T, Childress KO, Jensen JL, Rogers AP, Kerr G, Hutton ML, Sheedlo MJ, Bloch SC, Shupe JA, Horvay K, Flores T, Engel R, Wilkins S, McMurrick PJ, Lacy DB, Abud HE, Lyras D
(2020) Proc Natl Acad Sci U S A 117: 8064-8073
MeSH Terms: Animals, Bacterial Proteins, Bacterial Toxins, Cells, Cultured, Clostridioides difficile, Clostridium Infections, Colon, Disease Models, Animal, Female, Frizzled Receptors, Humans, Intestinal Mucosa, Mice, Organoids, Primary Cell Culture, Recombinant Proteins, Stem Cells
Show Abstract · Added March 24, 2020
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, 8, e73204 (2013); S. Kozar , 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Diffusion Tensor Tractrography Visualizes Partial Nerve Laceration Severity as Early as 1 Week After Surgical Repair in a Rat Model Ex Vivo.
Farinas AF, Manzanera Esteve IV, Pollins AC, Cardwell NL, Does MD, Dortch RD, Thayer WP
(2020) Mil Med 185: 35-41
MeSH Terms: Animals, Diffusion Tensor Imaging, Disease Models, Animal, Lacerations, Neurosurgical Procedures, Peripheral Nerve Injuries, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 5, 2020
BACKGROUND - Previous studies in our laboratory have demonstrated that a magnetic resonance imaging method called diffusion tensor imaging (DTI) can differentiate between crush and complete transection peripheral nerve injuries in a rat model ex vivo. DTI measures the directionally dependent effect of tissue barriers on the random diffusion of water molecules. In ordered tissues such as nerves, this information can be used to reconstruct the primary direction of diffusion along fiber tracts, which may provide information on fiber tract continuity after nerve injury and surgical repair.
METHODS - Sprague-Dawley rats were treated with different degrees of partial transection of the sciatic nerve followed by immediate repair and euthanized after 1 week of recovery. Nerves were then harvested, fixed, and scanned with a 7 Tesla magnetic resonance imaging to obtain DTIand fiber tractography in each sample. Additional behavioral (sciatic function index, foot fault asymmetry) and histological (Toluidine blue staining) assessments were performed for validation.
RESULTS - Tractography yielded a visual representation of the degree of injury that correlated with behavioral and histological evaluations.
CONCLUSIONS - DTI tractography is a noninvasive tool that can yield a visual representation of a partial nerve transection as early as 1 week after surgical repair.
© The Association of Military Surgeons of the United States. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Development of a novel murine model of lymphatic metastasis.
Banan B, Beckstead JA, Dunavant LE, Sohn Y, Adcock JM, Nomura S, Abumrad N, Goldenring JR, Fingleton B
(2020) Clin Exp Metastasis 37: 247-255
MeSH Terms: Animals, Cell Line, Tumor, Colonic Neoplasms, Disease Models, Animal, Female, Green Fluorescent Proteins, Humans, Luciferases, Luminescent Measurements, Lymph Nodes, Lymphatic Metastasis, Lymphatic Vessels, Male, Mesentery, Mice, Mice, Inbred C57BL, Stomach Neoplasms, Tomography, Optical, Tumor Burden
Show Abstract · Added March 24, 2020
Current laboratory models of lymphatic metastasis generally require either genetically modified animals or are technically challenging. Herein, we have developed a robust protocol for the induction of intralymphatic metastasis in wild-type mice with reproducible outcomes. To determine an optimal injection quantity and timeline for tumorigenesis, C57Bl/6 mice were injected directly into the mesenteric lymph duct (MLD) with varying numbers of syngeneic murine colon cancer cells (MC38) or gastric cancer cells (YTN16) expressing GFP/luciferase and monitored over 2-4 weeks. Tumor growth was tracked via whole-animal in vivo bioluminescence imaging (IVIS). Our data indicate that the injection of tumor cells into the MLD is a viable model for lymphatic metastasis as necropsies revealed large tumor burdens and metastasis in regional lymph nodes. This protocol enables a closer study of the role of lymphatics in cancer metastasis and opens a window for the development of novel approaches for treatment of metastatic diseases.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization.
Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE
(2020) Immunity 52: 388-403.e12
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cell Line, Disease Models, Animal, Drug Therapy, Combination, Ebolavirus, Epitopes, Female, Glycoproteins, Hemorrhagic Fever, Ebola, Humans, Immunoglobulin Fab Fragments, Macaca mulatta, Male, Mice, Mice, Inbred BALB C, Molecular Mimicry, Protein Conformation
Show Abstract · Added March 31, 2020
Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.
Copyright © 2020 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Phenome-based approach identifies RIC1-linked Mendelian syndrome through zebrafish models, biobank associations and clinical studies.
Unlu G, Qi X, Gamazon ER, Melville DB, Patel N, Rushing AR, Hashem M, Al-Faifi A, Chen R, Li B, Cox NJ, Alkuraya FS, Knapik EW
(2020) Nat Med 26: 98-109
MeSH Terms: Abnormalities, Multiple, Animals, Behavior, Animal, Biological Specimen Banks, Chondrocytes, Disease Models, Animal, Extracellular Matrix, Fibroblasts, Guanine Nucleotide Exchange Factors, Humans, Models, Biological, Musculoskeletal System, Osteogenesis, Phenomics, Phenotype, Procollagen, Protein Transport, Secretory Pathway, Syndrome, Zebrafish, Zebrafish Proteins
Show Abstract · Added January 15, 2020
Discovery of genotype-phenotype relationships remains a major challenge in clinical medicine. Here, we combined three sources of phenotypic data to uncover a new mechanism for rare and common diseases resulting from collagen secretion deficits. Using a zebrafish genetic screen, we identified the ric1 gene as being essential for skeletal biology. Using a gene-based phenome-wide association study (PheWAS) in the EHR-linked BioVU biobank, we show that reduced genetically determined expression of RIC1 is associated with musculoskeletal and dental conditions. Whole-exome sequencing identified individuals homozygous-by-descent for a rare variant in RIC1 and, through a guided clinical re-evaluation, it was discovered that they share signs with the BioVU-associated phenome. We named this new Mendelian syndrome CATIFA (cleft lip, cataract, tooth abnormality, intellectual disability, facial dysmorphism, attention-deficit hyperactivity disorder) and revealed further disease mechanisms. This gene-based, PheWAS-guided approach can accelerate the discovery of clinically relevant disease phenome and associated biological mechanisms.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction.
Vanderburgh J, Hill JL, Gupta MK, Kwakwa KA, Wang SK, Moyer K, Bedingfield SK, Merkel AR, d'Arcy R, Guelcher SA, Rhoades JA, Duvall CL
(2020) ACS Nano 14: 311-327
MeSH Terms: Animals, Antineoplastic Agents, Bone Neoplasms, Cell Line, Tumor, Cell Proliferation, Disease Models, Animal, Drug Screening Assays, Antitumor, Female, Humans, Ligands, Mice, Mice, Inbred C57BL, Mice, Knockout, Nanoparticles, Optical Imaging, Particle Size, Polymers, Pyridines, Surface Properties, Thiophenes, X-Ray Microtomography
Show Abstract · Added March 19, 2020
Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction. Small molecule inhibitors of Gli2 have been identified; however, the lipophilicity and poor pharmacokinetic profile of these compounds have precluded their success . In this study, we designed a bone-targeted nanoparticle (BTNP) comprising an amphiphilic diblock copolymer of poly[(propylene sulfide)--(alendronate acrylamide--,-dimethylacrylamide)] [PPS--P(Aln--DMA)] to encapsulate and preferentially deliver a small molecule Gli2 inhibitor, GANT58, to bone-associated tumors. The mol % of the bisphosphonate Aln in the hydrophilic polymer block was varied in order to optimize BTNP targeting to tumor-associated bone by a combination of nonspecific tumor accumulation (presumably through the enhanced permeation and retention effect) and active bone binding. Although 100% functionalization with Aln created BTNPs with strong bone binding, these BTNPs had highly negative zeta-potential, resulting in shorter circulation time, greater liver uptake, and less distribution to metastatic tumors in bone. However, 10 mol % of Aln in the hydrophilic block generated a formulation with a favorable balance of systemic pharmacokinetics and bone binding, providing the highest bone/liver biodistribution ratio among formulations tested. In an intracardiac tumor cell injection model of breast cancer bone metastasis, treatment with the lead candidate GANT58-BTNP formulation decreased tumor-associated bone lesion area 3-fold and increased bone volume fraction in the tibiae of the mice 2.5-fold. Aln conferred bone targeting to the GANT58-BTNPs, which increased GANT58 concentration in the tumor-associated bone relative to untargeted NPs, and also provided benefit through the direct antiresorptive therapeutic function of Aln. The dual benefit of the Aln in the BTNPs was supported by the observations that drug-free Aln-containing BTNPs improved bone volume fraction in bone-tumor-bearing mice, while GANT58-BTNPs created better therapeutic outcomes than both unloaded BTNPs and GANT58-loaded untargeted NPs. These findings suggest GANT58-BTNPs have potential to potently inhibit tumor-driven osteoclast activation and resultant bone destruction in patients with bone-associated tumor metastases.
0 Communities
3 Members
0 Resources
21 MeSH Terms
Probabilistic Assessment of Nerve Regeneration with Diffusion MRI in Rat Models of Peripheral Nerve Trauma.
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kang H, Does MD, Thayer WP, Dortch RD
(2019) Sci Rep 9: 19686
MeSH Terms: Animals, Diffusion Magnetic Resonance Imaging, Diffusion Tensor Imaging, Disease Models, Animal, Models, Neurological, Models, Statistical, Nerve Regeneration, Peripheral Nerve Injuries, Rats, Rats, Sprague-Dawley, Recovery of Function, Treatment Outcome
Show Abstract · Added March 5, 2020
Nerve regeneration after injury must occur in a timely fashion to restore function. Unfortunately, current methods (e.g., electrophysiology) provide limited information following trauma, resulting in delayed management and suboptimal outcomes. Herein, we evaluated the ability of diffusion MRI to monitor nerve regeneration after injury/repair. Sprague-Dawley rats were divided into three treatment groups (sham = 21, crush = 23, cut/repair = 19) and ex vivo diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) was performed 1-12 weeks post-surgery. Behavioral data showed a distinction between crush and cut/repair nerves at 4 weeks. This was consistent with DTI, which found that thresholds based on the ratio of radial and axial diffusivities (RD/AD = 0.40 ± 0.02) and fractional anisotropy (FA = 0.53 ± 0.01) differentiated crush from cut/repair injuries. By the 12 week, cut/repair nerves whose behavioral data indicated a partial recovery were below the RD/AD threshold (and above the FA threshold), while nerves that did not recover were on the opposite side of each threshold. Additional morphometric analysis indicated that DTI-derived normalized scalar indices report on axon density (RD/AD: r = -0.54, p < 1e-3; FA: r = 0.56, p < 1e-3). Interestingly, higher-order DKI analyses did not improve our ability classify recovery. These findings suggest that DTI may provide promising biomarkers for distinguishing successful/unsuccessful nerve repairs and potentially identify cases that require reoperation.
0 Communities
1 Members
0 Resources
12 MeSH Terms