, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 27

Publication Record

Connections

Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development.
Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH
(2017) Kidney Int 92: 1370-1383
MeSH Terms: Anemia, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Hypoxia, Clinical Trials, Phase III as Topic, Disease Models, Animal, Enzyme Inhibitors, Forkhead Transcription Factors, Humans, Hydroxylation, Hypoxia-Inducible Factor-Proline Dioxygenases, Kidney, Kidney Diseases, Mice, Molecular Targeted Therapy, Mutation, Organ Size, Procollagen-Proline Dioxygenase, Renal Insufficiency, Stromal Cells
Show Abstract · Added November 21, 2017
Hypoxia in the embryo is a frequent cause of intra-uterine growth retardation, low birth weight, and multiple organ defects. In the kidney, this can lead to low nephron endowment, predisposing to chronic kidney disease and arterial hypertension. A key component in cellular adaptation to hypoxia is the hypoxia-inducible factor pathway, which is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3. In the adult kidney, PHD oxygen sensors are differentially expressed in a cell type-dependent manner and control the production of erythropoietin in interstitial cells. However, the role of interstitial cell PHDs in renal development has not been examined. Here we used a genetic approach in mice to interrogate PHD function in FOXD1-expressing stroma during nephrogenesis. We demonstrate that PHD2 and PHD3 are essential for normal kidney development as the combined inactivation of stromal PHD2 and PHD3 resulted in renal failure that was associated with reduced kidney size, decreased numbers of glomeruli, and abnormal postnatal nephron formation. In contrast, nephrogenesis was normal in animals with individual PHD inactivation. We furthermore demonstrate that the defect in nephron formation in PHD2/PHD3 double mutants required intact hypoxia-inducible factor-2 signaling and was dependent on the extent of stromal hypoxia-inducible factor activation. Thus, hypoxia-inducible factor prolyl-4-hydroxylation in renal interstitial cells is critical for normal nephron formation.
Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Oxygen sensors as therapeutic targets in kidney disease.
Haase VH
(2017) Nephrol Ther 13 Suppl 1: S29-S34
MeSH Terms: Erythropoietin, Homeostasis, Humans, Hypoxia, Hypoxia-Inducible Factor-Proline Dioxygenases, Kidney, Oxygen, Prolyl-Hydroxylase Inhibitors, Renal Insufficiency, Chronic
Show Abstract · Added June 7, 2017
Hypoxia is a common clinical problem that has profound effects on renal homeostasis. Prolyl-4-hydroxylases PHD1, 2 and 3 function as oxygen sensors and control the activity of hypoxia-inducible factor (HIF), an oxygen-sensitive transcription factor that regulates a multitude of hypoxia responses, which help cells and tissues to adapt to low oxygen environments. This review provides an overview of the molecular mechanisms that govern these hypoxia responses and discusses clinical experience with compounds that inhibit prolyl-4-hydroxylases to harness HIF responses for therapy in nephrology.
Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies.
Haase VH
(2017) Exp Cell Res 356: 160-165
MeSH Terms: Anemia, Animals, Erythropoiesis, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Oxygen
Show Abstract · Added May 10, 2017
The oxygen-sensitive hypoxia-inducible factor (HIF) pathway plays a central role in the control of erythropoiesis and iron metabolism. The discovery of prolyl hydroxylase domain (PHD) proteins as key regulators of HIF activity has led to the development of inhibitory compounds that are now in phase 3 clinical development for the treatment of renal anemia, a condition that is commonly found in patients with advanced chronic kidney disease. This review provides a concise overview of clinical effects associated with pharmacologic PHD inhibition and was written in memory of Professor Lorenz Poellinger.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism.
Haase VH
(2017) Hemodial Int 21 Suppl 1: S110-S124
MeSH Terms: Anemia, Barbiturates, Clinical Trials as Topic, Erythropoiesis, Erythropoietin, Glycine, Humans, Hypoxia-Inducible Factor-Proline Dioxygenases, Iron, Isoquinolines, Picolinic Acids, Prolyl-Hydroxylase Inhibitors, Renal Dialysis
Show Abstract · Added April 28, 2017
A classic response to systemic hypoxia is the increase in red blood cell production. This response is controlled by the prolyl hydroxylase domain/hypoxia-inducible factor (HIF) pathway, which regulates a broad spectrum of cellular functions. The discovery of this pathway as a key regulator of erythropoiesis has led to the development of small molecules that stimulate the production of endogenous erythropoietin and enhance iron metabolism. This review provides a concise overview of the cellular and molecular mechanisms that govern HIF-induced erythropoietic responses and provides an update on clinical experience with compounds that target HIF-prolyl hydroxylases for anemia therapy.
© 2017 International Society for Hemodialysis.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes.
Urrutia AA, Afzal A, Nelson J, Davidoff O, Gross KW, Haase VH
(2016) Blood 128: 2550-2560
MeSH Terms: Animals, Brain, Erythropoietin, Gene Expression Regulation, Hypoxia, Brain, Hypoxia-Inducible Factor-Proline Dioxygenases, Mice, Mice, Transgenic, Pericytes, Procollagen-Proline Dioxygenase, Transcription Factors, Transcription, Genetic
Show Abstract · Added September 30, 2016
A classic response to systemic hypoxia is the increased production of red blood cells due to hypoxia-inducible factor (HIF)-mediated induction of erythropoietin (EPO). EPO is a glycoprotein hormone that is essential for normal erythropoiesis and is predominantly synthesized by peritubular renal interstitial fibroblast-like cells, which express cellular markers characteristic of neuronal cells and pericytes. To investigate whether the ability to synthesize EPO is a general functional feature of pericytes, we used conditional gene targeting to examine the von Hippel-Lindau/prolyl-4-hydroxylase domain (PHD)/HIF axis in cell-expressing neural glial antigen 2, a known molecular marker of pericytes in multiple organs. We found that pericytes in the brain synthesized EPO in mice with genetic HIF activation and were capable of responding to systemic hypoxia with the induction of Epo. Using high-resolution multiplex in situ hybridization, we determined that brain pericytes represent an important cellular source of Epo in the hypoxic brain (up to 70% of all Epo-expressing cells). We furthermore determined that Epo transcription in brain pericytes was HIF-2 dependent and cocontrolled by PHD2 and PHD3, oxygen- and 2-oxoglutarate-dependent prolyl-4-hydroxylases that regulate HIF activity. In summary, our studies provide experimental evidence that pericytes in the brain have the ability to function as oxygen sensors and respond to hypoxia with EPO synthesis. Our findings furthermore suggest that the ability to synthesize EPO may represent a functional feature of pericytes in the brain and kidney.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease.
Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH
(2016) Kidney Int 90: 1115-1122
MeSH Terms: Aged, Anemia, Double-Blind Method, Female, Glycine, Humans, Hypoxia-Inducible Factor-Proline Dioxygenases, Male, Middle Aged, Outcome Assessment, Health Care, Picolinic Acids, Renal Insufficiency, Chronic
Show Abstract · Added September 22, 2016
Current treatment of anemia in chronic kidney disease (CKD) with erythropoiesis-stimulating agents can lead to substantial hemoglobin oscillations above target range and high levels of circulating erythropoietin. Vadadustat (AKB-6548), a novel, titratable, oral hypoxia-inducible factor prolyl hydroxylase inhibitor induces endogenous erythropoietin synthesis and enhances iron mobilization. In this 20-week, double-blind, randomized, placebo-controlled, phase 2b study, we evaluated the efficacy and safety of once-daily vadadustat in patients with stages 3a to 5 non-dialysis-dependent CKD. The primary endpoint was the percentage of patients who, during the last 2 weeks of treatment, achieved or maintained either a mean hemoglobin level of 11.0 g/dl or more or a mean increase in hemoglobin of 1.2 g/dl or more over the predose average. Significantly, the primary endpoint was met in 54.9% of patients on vadadustat and 10.3% of patients on placebo. Significant increases in both reticulocytes and total iron-binding capacity and significant decreases in both serum hepcidin and ferritin levels were observed in patients on vadadustat compared with placebo. The overall incidence of adverse events was comparable between the 2 groups. Serious adverse events occurred in 23.9% and 15.3% of the vadadustat- and placebo-treated patients, respectively. Three deaths occurred in the vadadustat arm. Thus, this phase 2b study demonstrated that vadadustat raised and maintained hemoglobin levels in a predictable and controlled manner while enhancing iron mobilization in patients with nondialysis-dependent CKD.
Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH
(2016) J Clin Invest 126: 1926-38
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Erythropoietin, Forkhead Transcription Factors, Hypoxia, Hypoxia-Inducible Factor-Proline Dioxygenases, Kidney, Mice, Mice, Knockout, Procollagen-Proline Dioxygenase, Stromal Cells
Show Abstract · Added May 3, 2016
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
0 Communities
1 Members
0 Resources
11 MeSH Terms
The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.
Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, Shay S, French JL, West J, Haase VH
(2016) Mol Cell Biol 36: 1584-94
MeSH Terms: Animals, Arterial Pressure, Cell Hypoxia, Disease Models, Animal, Hypertension, Pulmonary, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Mice, Mutation, Pulmonary Artery, Signal Transduction, Transcription Factors
Show Abstract · Added March 16, 2016
Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
2 Members
0 Resources
12 MeSH Terms
EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection.
Olenchock BA, Moslehi J, Baik AH, Davidson SM, Williams J, Gibson WJ, Chakraborty AA, Pierce KA, Miller CM, Hanse EA, Kelekar A, Sullivan LB, Wagers AJ, Clish CB, Vander Heiden MG, Kaelin WG
(2016) Cell 164: 884-95
MeSH Terms: Animals, Hypoxia-Inducible Factor-Proline Dioxygenases, Ischemia, Ischemic Preconditioning, Ketoglutaric Acids, Kynurenic Acid, Liver, Mice, Models, Animal, Myocardial Reperfusion Injury, Parabiosis
Show Abstract · Added March 6, 2016
Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Introduction: Metals in Biology: α-Ketoglutarate/Iron-Dependent Dioxygenases.
Guengerich FP
(2015) J Biol Chem 290: 20700-1
MeSH Terms: 5-Methylcytosine, AlkB Homolog 4, Lysine Demethylase, DNA, DNA Damage, DNA Repair, Dioxygenases, Epigenesis, Genetic, Gene Expression, Humans, Iron, Isoenzymes, Ketoglutaric Acids, Multigene Family, Oxidation-Reduction, Protein Processing, Post-Translational, Thymine
Show Abstract · Added March 14, 2018
Four minireviews deal with aspects of the α-ketoglutarate/iron-dependent dioxygenases in this eighth Thematic Series on Metals in Biology. The minireviews cover a general introduction and synopsis of the current understanding of mechanisms of catalysis, the roles of these dioxygenases in post-translational protein modification and de-modification, the roles of the ten-eleven translocation (Tet) dioxygenases in the modification of methylated bases (5mC, T) in DNA relevant to epigenetic mechanisms, and the roles of the AlkB-related dioxygenases in the repair of damaged DNA and RNA. The use of α-ketoglutarate (alternatively termed 2-oxoglutarate) as a co-substrate in so many oxidation reactions throughout much of nature is notable and has surprisingly emerged from biochemical and genomic analysis. About 60 of these enzymes are now recognized in humans, and a number have been identified as having critical functions.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
16 MeSH Terms