Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 192

Publication Record

Connections

Protective Role of mPGES-1 (Microsomal Prostaglandin E Synthase-1)-Derived PGE (Prostaglandin E) and the Endothelial EP4 (Prostaglandin E Receptor) in Vascular Responses to Injury.
Hao H, Hu S, Wan Q, Xu C, Chen H, Zhu L, Xu Z, Meng J, Breyer RM, Li N, Liu DP, FitzGerald GA, Wang M
(2018) Arterioscler Thromb Vasc Biol 38: 1115-1124
MeSH Terms: Animals, Cell Adhesion, Cell Proliferation, Cells, Cultured, Dinoprostone, Disease Models, Animal, Endothelial Cells, Female, Femoral Artery, Humans, Leukocytes, Male, Mice, Inbred C57BL, Mice, Knockout, Muscle, Smooth, Neointima, Prostaglandin-E Synthases, Re-Epithelialization, Receptors, Epoprostenol, Receptors, Prostaglandin E, EP4 Subtype, Signal Transduction, Vascular System Injuries
Show Abstract · Added May 29, 2018
OBJECTIVE - Deletion of mPGES-1 (microsomal prostaglandin E synthase-1)-an anti-inflammatory target alternative to COX (cyclooxygenase)-2-attenuates injury-induced neointima formation in mice. This is attributable to the augmented levels of PGI (prostacyclin)-a known restraint of the vascular response to injury, acting via IP (I prostanoid receptor). To examine the role of mPGES-1-derived PGE (prostaglandin E) in vascular remodeling without the IP.
APPROACH AND RESULTS - Mice deficient in both IP and mPGES-1 (DKO [double knockout] and littermate controls [IP KO (knockout)]) were subjected to angioplasty wire injury. Compared with the deletion of IP alone, coincident deletion of IP and mPGES-1 increased neointima formation, without affecting media area. Early pathological changes include impaired reendothelialization and increased leukocyte invasion in neointima. Endothelial cells (ECs), but not vascular smooth muscle cells, isolated from DKOs exhibited impaired cell proliferation. Activation of EP (E prostanoid receptor) 4 (and EP2, to a lesser extent), but not of EP1 or EP3, promoted EC proliferation. EP4 antagonism inhibited proliferation of mPGES-1-competent ECs, but not of mPGES-1-deficient ECs, which showed suppressed PGE production. EP4 activation inhibited leukocyte adhesion to ECs in vitro, promoted reendothelialization, and limited neointima formation post-injury in the mouse. Endothelium-restricted deletion of EP4 in mice suppressed reendothelialization, increased neointimal leukocytes, and exacerbated neointimal formation.
CONCLUSIONS - Removal of the IP receptors unmasks a protective role of mPGES-1-derived PGE in limiting injury-induced vascular hyperplasia. EP4, in the endothelial compartment, is essential to promote reendothelialization and restrain neointimal formation after injury. Activating EP4 bears therapeutic potential to prevent restenosis after percutaneous coronary intervention.
© 2018 American Heart Association, Inc.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Prostaglandin E glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y.
Brüser A, Zimmermann A, Crews BC, Sliwoski G, Meiler J, König GM, Kostenis E, Lede V, Marnett LJ, Schöneberg T
(2017) Sci Rep 7: 2380
MeSH Terms: Animals, Binding Sites, Cell Line, Tumor, Cyclooxygenase 2, Dinoprostone, HEK293 Cells, High-Throughput Nucleotide Sequencing, High-Throughput Screening Assays, Humans, Kinetics, Ligands, Mice, Molecular Docking Simulation, Protein Binding, Protein Conformation, alpha-Helical, Protein Conformation, beta-Strand, Protein Interaction Domains and Motifs, Purinergic Agonists, RAW 264.7 Cells, Receptors, Purinergic P2, Substrate Specificity, Thermodynamics, Transcriptome
Show Abstract · Added March 17, 2018
Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E, PGE-G, mobilizes Ca and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE-G, we performed a subtractive screening approach where mRNA from PGE-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y as the specific target of PGE-G. We show that PGE-G and UDP are both agonists at P2Y, but they activate the receptor with extremely different EC values of ~1 pM and ~50 nM, respectively. The identification of the PGE-G/P2Y pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.
0 Communities
2 Members
0 Resources
23 MeSH Terms
Efferocytosis-induced prostaglandin E2 production impairs alveolar macrophage effector functions during Streptococcus pneumoniae infection.
Salina AC, Souza TP, Serezani CH, Medeiros AI
(2017) Innate Immun 23: 219-227
MeSH Terms: Animals, Apoptosis, Bacteriolysis, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Dinoprostone, Female, Homeostasis, Humans, Hydrogen Peroxide, Jurkat Cells, Macrophages, Alveolar, Phagocytosis, Pneumococcal Infections, Rats, Rats, Wistar, Receptors, Prostaglandin E, EP2 Subtype, Receptors, Prostaglandin E, EP4 Subtype, Signal Transduction, Streptococcus pneumoniae
Show Abstract · Added May 4, 2017
Alveolar macrophages (AMs) are multitasking cells that maintain lung homeostasis by clearing apoptotic cells (efferocytosis) and performing antimicrobial effector functions. Different PRRs have been described to be involved in the binding and capture of non-opsonized Streptococcus pneumoniae, such as TLR-2, mannose receptor (MR) and scavenger receptors (SRs). However, the mechanism by which the ingestion of apoptotic cells negatively influences the clearance of non-opsonized S. pneumoniae remains to be determined. In this study, we evaluated whether the prostaglandin E2 (PGE) produced during efferocytosis by AMs inhibits the ingestion and killing of non-opsonized S. pneumoniae. Resident AMs were pre-treated with an E prostanoid (EP) receptor antagonist, inhibitors of cyclooxygenase and protein kinase A (PKA), incubated with apoptotic Jurkat T cells, and then challenged with S. pneumoniae. Efferocytosis slightly decreased the phagocytosis of S. pneumoniae but greatly inhibited bacterial killing by AMs in a manner dependent on PGE production, activation of the EP2-EP4/cAMP/PKA pathway and inhibition of HO production. Our data suggest that the PGE produced by AMs during efferocytosis inhibits HO production and impairs the efficient clearance non-opsonized S. pneumoniae by EP2-EP4/cAMP/PKA pathway.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx.
Dadi PK, Vierra NC, Days E, Dickerson MT, Vinson PN, Weaver CD, Jacobson DA
(2017) ACS Chem Neurosci 8: 558-568
MeSH Terms: Action Potentials, Animals, Antibodies, Calcium, Dinoprostone, Electric Stimulation, Fluoxetine, Ganglia, Spinal, HEK293 Cells, Humans, Lectins, Mice, Mice, Inbred C57BL, Mutation, Nociceptors, Potassium Channel Blockers, Potassium Channels, Tandem Pore Domain, Protein Synthesis Inhibitors, Tetracycline
Show Abstract · Added November 13, 2017
The two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl) flux screen (HTS). An initial pilot screen with a bioactive lipid library identified 11-deoxy prostaglandin F2α as a potent activator of TREK-2 channels (EC ≈ 0.294 μM), which was utilized to optimize the TREK-2 Tl flux assay (Z' = 0.752). A HTS was then performed with 76 575 structurally diverse small molecules. Many small molecules that selectively activate TREK-2 were discovered. As these molecules were able to activate single TREK-2 channels in excised membrane patches, they are likely direct TREK-2 activators. Furthermore, TREK-2 activators reduced primary dorsal root ganglion (DRG) c-fiber Ca influx. Interestingly, some of the selective TREK-2 activators such as 11-deoxy prostaglandin F2α were found to inhibit the K2P channel TREK-1. Utilizing chimeric channels containing portions of TREK-1 and TREK-2, the region of the TREK channels that allows for either small molecule activation or inhibition was identified. This region lies within the second pore domain containing extracellular loop and is predicted to play an important role in modulating TREK channel activity. Moreover, the selective TREK-2 activators identified in this HTS provide important tools for assessing human TREK-2 channel function and investigating their therapeutic potential for treating chronic pain.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Inhibition of the Biosynthesis of Prostaglandin E2 By Low-Dose Aspirin: Implications for Adenocarcinoma Metastasis.
Boutaud O, Sosa IR, Amin T, Oram D, Adler D, Hwang HS, Crews BC, Milne G, Harris BK, Hoeksema M, Knollmann BC, Lammers PE, Marnett LJ, Massion PP, Oates JA
(2016) Cancer Prev Res (Phila) 9: 855-865
MeSH Terms: Adenocarcinoma, Adult, Aspirin, Cell Line, Tumor, Cyclooxygenase 2, Cyclooxygenase Inhibitors, Dinoprostone, Female, Humans, Male, Neoplasm Invasiveness
Show Abstract · Added January 29, 2018
Meta-analyses have demonstrated that low-dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the antiplatelet action of low-dose aspirin likely contributes to its antimetastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E (PGE) also contributes to metastasis, and we addressed the hypothesis that low-dose aspirin also inhibits PGE biosynthesis. We show that low-dose aspirin inhibits systemic PGE biosynthesis by 45% in healthy volunteers (P < 0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells, its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells upregulates COX-2 expression and PGE biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE production by the platelet-tumor cell aggregates. In conclusion, low-dose aspirin has a significant effect on extraplatelet cyclooxygenase and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low-dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE biosynthesis in metastasizing tumor cells. Cancer Prev Res; 9(11); 855-65. ©2016 AACR.
©2016 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1.
Kraemer MP, Choi H, Reese J, Lamb FS, Breyer RM
(2016) Vascul Pharmacol 84: 47-54
MeSH Terms: Angiotensin II, Animals, Calcium, Dinoprostone, Dose-Response Relationship, Drug, Femoral Artery, Focal Adhesion Kinase 2, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptor, Angiotensin, Type 1, Receptors, Prostaglandin E, EP3 Subtype, Vasoconstriction, rho-Associated Kinases
Show Abstract · Added April 6, 2017
Prostaglandin E2 (PGE2), a cyclooxygenase metabolite that generally acts as a systemic vasodepressor, has been shown to have vasopressor effects under certain physiologic conditions. Previous studies have demonstrated that PGE2 receptor signaling modulates angiotensin II (Ang II)-induced hypertension, but the interaction of these two systems in the regulation of vascular reactivity is incompletely characterized. We hypothesized that Ang II, a principal effector of the renin-angiotensin-aldosterone system, potentiates PGE2-mediated vasoconstriction. Here we demonstrate that pre-treatment of arterial rings with 1nM Ang II potentiated PGE2-evoked constriction in a concentration dependent manner (AUC-Ang II 2.778±2.091, AUC+Ang II 22.830±8.560, ***P<0.001). Using genetic deletion models and pharmacological antagonists, we demonstrate that this potentiation effect is mediated via concurrent signaling between the angiotensin II receptor 1 (AT1) and the PGE2 E-prostanoid receptor 3 (EP3) in the mouse femoral artery. EP3 receptor-mediated vasoconstriction is shown to be dependent on extracellular calcium in combination with proline-rich tyrosine kinase 2 (Pyk2) and Rho-kinase. Thus, our findings reveal a novel mechanism through which Ang II and PGE2 regulate peripheral vascular reactivity.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Increased lethality and defective pulmonary clearance of Streptococcus pneumoniae in microsomal prostaglandin E synthase-1-knockout mice.
Dolan JM, Weinberg JB, O'Brien E, Abashian A, Procario MC, Aronoff DM, Crofford LJ, Peters-Golden M, Ward L, Mancuso P
(2016) Am J Physiol Lung Cell Mol Physiol 310: L1111-20
MeSH Terms: Animals, Cyclooxygenase 1, Cytokines, Dinoprostone, Female, Immunity, Innate, Lung, Macrophages, Alveolar, Membrane Proteins, Mice, Inbred C57BL, Mice, Knockout, Microsomes, Nitric Oxide, Pneumonia, Pneumococcal, Streptococcus pneumoniae
Show Abstract · Added June 2, 2017
The production of prostaglandin E2 (PGE2) increases dramatically during pneumococcal pneumonia, and this lipid mediator impairs alveolar macrophage (AM)-mediated innate immune responses. Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme involved in the synthesis of PGE2, and its expression is enhanced during bacterial infections. Genetic deletion of mPGES-1 in mice results in diminished PGE2 production and elevated levels of other prostaglandins after infection. Since PGE2 plays an important immunoregulatory role during bacterial pneumonia we assessed the impact of mPGES-1 deletion in the host defense against pneumococcal pneumonia in vivo and in AMs in vitro. Wild-type (WT) and mPGES-1 knockout (KO) mice were challenged with Streptococcus pneumoniae via the intratracheal route. Compared with WT animals, we observed reduced survival and increased lung and spleen bacterial burdens in mPGES-1 KO mice 24 and 48 h after S. pneumoniae infection. While we found modest differences between WT and mPGES-1 KO mice in pulmonary cytokines, AMs from mPGES-1 KO mice exhibited defective killing of ingested bacteria in vitro that was associated with diminished inducible nitric oxide synthase expression and reduced nitric oxide (NO) synthesis. Treatment of AMs from mPGES-1 KO mice with an NO donor restored bacterial killing in vitro. These results suggest that mPGES-1 plays a critical role in bacterial pneumonia and that genetic ablation of this enzyme results in diminished pulmonary host defense in vivo and in vitro. These results suggest that specific inhibition of PGE2 synthesis by targeting mPGES-1 may weaken host defense against bacterial infections.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma.
Cook PJ, Thomas R, Kingsley PJ, Shimizu F, Montrose DC, Marnett LJ, Tabar VS, Dannenberg AJ, Benezra R
(2016) Neuro Oncol 18: 1379-89
MeSH Terms: Animals, Blotting, Western, Brain Neoplasms, Chromatin Immunoprecipitation, Cyclooxygenase 2, Dinoprostone, Enzyme-Linked Immunosorbent Assay, Gene Knockdown Techniques, Glioblastoma, Humans, Immunohistochemistry, Inhibitor of Differentiation Protein 1, Mice, Radiation Tolerance, Real-Time Polymerase Chain Reaction, Signal Transduction
Show Abstract · Added April 12, 2019
BACKGROUND - In glioblastoma (GBM), Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance.
METHODS - Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2), a stabilized form of PGE2, to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1, a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting, quantitative real-time (qRT)-PCR, and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM.
RESULTS - In GBM cells, dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads, in turn, to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage, which are dependent on Id1.
CONCLUSIONS - In GBM, Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively, these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients.
© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
MeSH Terms
Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality.
Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FW, Arantes EC, Serezani CH, Zamboni DS, Faccioli LH
(2016) Nat Commun 7: 10760
MeSH Terms: Animals, Arachidonate 5-Lipoxygenase, Blotting, Western, Carrier Proteins, Celecoxib, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Cyclooxygenase Inhibitors, Dinoprostone, In Vitro Techniques, Indoles, Indomethacin, Inflammasomes, Interleukin-1beta, Leukotriene B4, Lipoxygenase Inhibitors, Macrophages, Macrophages, Peritoneal, Mice, Mice, Knockout, NF-kappa B, NLR Family, Pyrin Domain-Containing 3 Protein, Phosphoproteins, Prostaglandin Antagonists, Receptors, Prostaglandin E, EP2 Subtype, Receptors, Prostaglandin E, EP4 Subtype, Reverse Transcriptase Polymerase Chain Reaction, Scorpion Stings, Scorpion Venoms, Scorpions, Xanthones
Show Abstract · Added May 4, 2017
Tityus serrulatus sting causes thousands of deaths annually worldwide. T. serrulatus-envenomed victims exhibit local or systemic reaction that culminates in pulmonary oedema, potentially leading to death. However, the molecular mechanisms underlying T. serrulatus venom (TsV) activity remain unknown. Here we show that TsV triggers NLRP3 inflammasome activation via K(+) efflux. Mechanistically, TsV triggers lung-resident cells to release PGE2, which induces IL-1β production via E prostanoid receptor 2/4-cAMP-PKA-NFκB-dependent mechanisms. IL-1β/IL-1R actions account for oedema and neutrophil recruitment to the lungs, leading to TsV-induced mortality. Inflammasome activation triggers LTB4 production and further PGE2 via IL-1β/IL-1R signalling. Activation of LTB4-BLT1/2 pathway decreases cAMP generation, controlling TsV-induced inflammation. Exogenous administration confirms LTB4 anti-inflammatory activity and abrogates TsV-induced mortality. These results suggest that the balance between LTB4 and PGE2 determines the amount of IL-1β inflammasome-dependent release and the outcome of envenomation. We suggest COX1/2 inhibition as an effective therapeutic intervention for scorpion envenomation.
0 Communities
1 Members
0 Resources
31 MeSH Terms
Prostaglandin E2 Regulation of Macrophage Innate Immunity.
Kimmel DW, Rogers LM, Aronoff DM, Cliffel DE
(2016) Chem Res Toxicol 29: 19-25
MeSH Terms: Animals, Cell Line, Dinoprostone, Immunity, Innate, Lactic Acid, Lipopolysaccharides, Macrophages, Mice, Streptococcus
Show Abstract · Added June 2, 2017
Globally, maternal and fetal health is greatly impacted by extraplacental inflammation. Group B Streptococcus (GBS), a leading cause of chorioamnionitis, is thought to take advantage of the uterine environment during pregnancy in order to cause inflammation and infection. In this study, we demonstrate the metabolic changes of murine macrophages caused by GBS exposure. GBS alone prompted a delayed increase in lactate production, highlighting its ability to redirect macrophage metabolism from aerobic to anaerobic respiration. This production of lactate is thought to aid in the development and propagation of GBS throughout the surrounding tissue. Additionally, this study shows that PGE2 priming was able to exacerbate lactate production, shown by the rapid and substantial lactate increases seen upon GBS exposure. These data provide a novel model to study the role of GBS exposure to macrophages with and without PGE2 priming.
0 Communities
1 Members
0 Resources
9 MeSH Terms