Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 477

Publication Record

Connections

Relationship between very low low-density lipoprotein cholesterol concentrations not due to statin therapy and risk of type 2 diabetes: A US-based cross-sectional observational study using electronic health records.
Feng Q, Wei WQ, Chung CP, Levinson RT, Sundermann AC, Mosley JD, Bastarache L, Ferguson JF, Cox NJ, Roden DM, Denny JC, Linton MF, Edwards DRV, Stein CM
(2018) PLoS Med 15: e1002642
MeSH Terms: Adult, Case-Control Studies, Cholesterol, LDL, Cohort Studies, Cross-Sectional Studies, Diabetes Mellitus, Type 2, Electronic Health Records, Female, Humans, Logistic Models, Male, Middle Aged, Odds Ratio, Risk Factors, United States, Young Adult
Show Abstract · Added April 2, 2019
BACKGROUND - Observations from statin clinical trials and from Mendelian randomization studies suggest that low low-density lipoprotein cholesterol (LDL-C) concentrations may be associated with increased risk of type 2 diabetes mellitus (T2DM). Despite the findings from statin clinical trials and genetic studies, there is little direct evidence implicating low LDL-C concentrations in increased risk of T2DM.
METHODS AND FINDINGS - We used de-identified electronic health records (EHRs) at Vanderbilt University Medical Center to compare the risk of T2DM in a cross-sectional study among individuals with very low (≤60 mg/dl, N = 8,943) and normal (90-130 mg/dl, N = 71,343) LDL-C levels calculated using the Friedewald formula. LDL-C levels associated with statin use, hospitalization, or a serum albumin level < 3 g/dl were excluded. We used a 2-phase approach: in 1/3 of the sample (discovery) we used T2DM phenome-wide association study codes (phecodes) to identify cases and controls, and in the remaining 2/3 (validation) we identified T2DM cases and controls using a validated algorithm. The analysis plan for the validation phase was constructed at the time of the design of that component of the study. The prevalence of T2DM in the very low and normal LDL-C groups was compared using logistic regression with adjustment for age, race, sex, body mass index (BMI), high-density lipoprotein cholesterol, triglycerides, and duration of care. Secondary analyses included prespecified stratification by sex, race, BMI, and LDL-C level. In the discovery cohort, phecodes related to T2DM were significantly more frequent in the very low LDL-C group. In the validation cohort (N = 33,039 after applying the T2DM algorithm to identify cases and controls), the risk of T2DM was increased in the very low compared to normal LDL-C group (odds ratio [OR] 2.06, 95% CI 1.80-2.37; P < 2 × 10-16). The findings remained significant in sensitivity analyses. The association between low LDL-C levels and T2DM was significant in males (OR 2.43, 95% CI 2.00-2.95; P < 2 × 10-16) and females (OR 1.74, 95% CI 1.42-2.12; P = 6.88 × 10-8); in normal weight (OR 2.18, 95% CI 1.59-2.98; P = 1.1× 10-6), overweight (OR 2.17, 95% CI 1.65-2.83; P = 1.73× 10-8), and obese (OR 2.00, 95% CI 1.65-2.41; P = 8 × 10-13) categories; and in individuals with LDL-C < 40 mg/dl (OR 2.31, 95% CI 1.71-3.10; P = 3.01× 10-8) and LDL-C 40-60 mg/dl (OR 1.99, 95% CI 1.71-2.32; P < 2.0× 10-16). The association was significant in individuals of European ancestry (OR 2.67, 95% CI 2.25-3.17; P < 2 × 10-16) but not in those of African ancestry (OR 1.09, 95% CI 0.81-1.46; P = 0.56). A limitation was that we only compared groups with very low and normal LDL-C levels; also, since this was not an inception cohort, we cannot exclude the possibility of reverse causation.
CONCLUSIONS - Very low LDL-C concentrations occurring in the absence of statin treatment were significantly associated with T2DM risk in a large EHR population; this increased risk was present in both sexes and all BMI categories, and in individuals of European ancestry but not of African ancestry. Longitudinal cohort studies to assess the relationship between very low LDL-C levels not associated with lipid-lowering therapy and risk of developing T2DM will be important.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet.
Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M
(2018) Am J Physiol Endocrinol Metab 315: E1251-E1263
MeSH Terms: Animals, Blood Glucose, Cell Proliferation, Diabetes Mellitus, Type 2, Diet, High-Fat, Insulin Resistance, Insulin-Secreting Cells, Lipid Metabolism, Lipids, Liver, Male, Mice, Muscle, Skeletal, Obesity
Show Abstract · Added April 15, 2019
Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Inhibition of Epidermal Growth Factor Receptor Activation Is Associated With Improved Diabetic Nephropathy and Insulin Resistance in Type 2 Diabetes.
Li Z, Li Y, Overstreet JM, Chung S, Niu A, Fan X, Wang S, Wang Y, Zhang MZ, Harris RC
(2018) Diabetes 67: 1847-1857
MeSH Terms: Albuminuria, Animals, Biomarkers, Crosses, Genetic, Cytokines, Diabetes Mellitus, Type 2, Diabetic Nephropathies, ErbB Receptors, Erlotinib Hydrochloride, Fibrosis, Glomerulonephritis, Hypoglycemic Agents, Insulin Resistance, Kidney, Macrophages, Membrane Transport Modulators, Mice, Knockout, Mice, Mutant Strains, Nitric Oxide Synthase Type III, Oxidative Stress, Protein Kinase Inhibitors, T-Lymphocytes, Transforming Growth Factor alpha
Show Abstract · Added November 9, 2018
Previous studies by us and others have indicated that renal epidermal growth factor receptors (EGFR) are activated in models of diabetic nephropathy (DN) and that inhibition of EGFR activity protects against progressive DN in type 1 diabetes. In this study we examined whether inhibition of EGFR activation would affect the development of DN in a mouse model of accelerated type 2 diabetes (BKS with endothelial nitric oxide knockout [eNOS]). eNOS mice received vehicle or erlotinib, an inhibitor of EGFR tyrosine kinase activity, beginning at 8 weeks of age and were sacrificed at 20 weeks of age. In addition, genetic models inhibiting EGFR activity () and transforming growth factor-α () were studied in this model of DN in type 2 diabetes. Compared with vehicle-treated mice, erlotinib-treated animals had less albuminuria and glomerulosclerosis, less podocyte loss, and smaller amounts of renal profibrotic and fibrotic components. Erlotinib treatment decreased renal oxidative stress, macrophage and T-lymphocyte infiltration, and the production of proinflammatory cytokines. Erlotinib treatment also preserved pancreas function, and these mice had higher blood insulin levels at 20 weeks, decreased basal blood glucose levels, increased glucose tolerance and insulin sensitivity, and increased blood levels of adiponectin compared with vehicle-treated mice. Similar to the aforementioned results, both and diabetic mice also had attenuated DN, preserved pancreas function, and decreased basal blood glucose levels. In this mouse model of accelerated DN, inhibition of EGFR signaling led to increased longevity.
© 2018 by the American Diabetes Association.
1 Communities
0 Members
0 Resources
23 MeSH Terms
Associations of coronary artery calcified plaque density with mortality in type 2 diabetes: the Diabetes Heart Study.
Raffield LM, Cox AJ, Criqui MH, Hsu FC, Terry JG, Xu J, Freedman BI, Carr JJ, Bowden DW
(2018) Cardiovasc Diabetol 17: 67
MeSH Terms: Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Coronary Angiography, Coronary Artery Disease, Coronary Vessels, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Humans, Male, Middle Aged, Plaque, Atherosclerotic, Prognosis, Risk Factors, United States, Vascular Calcification
Show Abstract · Added September 11, 2018
BACKGROUND - Coronary artery calcified plaque (CAC) is strongly predictive of cardiovascular disease (CVD) events and mortality, both in general populations and individuals with type 2 diabetes at high risk for CVD. CAC is typically reported as an Agatston score, which is weighted for increased plaque density. However, the role of CAC density in CVD risk prediction, independently and with CAC volume, remains unclear.
METHODS - We examined the role of CAC density in individuals with type 2 diabetes from the family-based Diabetes Heart Study and the African American-Diabetes Heart Study. CAC density was calculated as mass divided by volume, and associations with incident all-cause and CVD mortality [median follow-up 10.2 years European Americans (n = 902, n = 286 deceased), 5.2 years African Americans (n = 552, n = 93 deceased)] were examined using Cox proportional hazards models, independently and in models adjusted for CAC volume.
RESULTS - In European Americans, CAC density, like Agatston score and volume, was consistently associated with increased risk of all-cause and CVD mortality (p ≤ 0.002) in models adjusted for age, sex, statin use, total cholesterol, HDL, systolic blood pressure, high blood pressure medication use, and current smoking. However, these associations were no longer significant when models were additionally adjusted for CAC volume. CAC density was not significantly associated with mortality, either alone or adjusted for CAC volume, in African Americans.
CONCLUSIONS - CAC density is not associated with mortality independent from CAC volume in European Americans and African Americans with type 2 diabetes.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling.
Samovski D, Dhule P, Pietka T, Jacome-Sosa M, Penrose E, Son NH, Flynn CR, Shoghi KI, Hyrc KL, Goldberg IJ, Gamazon ER, Abumrad NA
(2018) Diabetes 67: 1272-1284
MeSH Terms: Animals, CD36 Antigens, CHO Cells, Carbohydrate Metabolism, Cells, Cultured, Cricetinae, Cricetulus, Diabetes Mellitus, Type 2, Female, Glucose, Humans, Insulin, Insulin Resistance, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Skeletal, Receptor, Insulin, Signal Transduction
Show Abstract · Added May 26, 2018
During reduced energy intake, skeletal muscle maintains homeostasis by rapidly suppressing insulin-stimulated glucose utilization. Loss of this adaptation is observed with deficiency of the fatty acid transporter CD36. A similar loss is also characteristic of the insulin-resistant state where CD36 is dysfunctional. To elucidate what links CD36 to muscle glucose utilization, we examined whether CD36 signaling might influence insulin action. First, we show that CD36 deletion specific to skeletal muscle reduces expression of insulin signaling and glucose metabolism genes. It decreases muscle ceramides but impairs glucose disposal during a meal. Second, depletion of CD36 suppresses insulin signaling in primary-derived human myotubes, and the mechanism is shown to involve functional CD36 interaction with the insulin receptor (IR). CD36 promotes tyrosine phosphorylation of IR by the Fyn kinase and enhances IR recruitment of P85 and downstream signaling. Third, pretreatment for 15 min with saturated fatty acids suppresses CD36-Fyn enhancement of IR phosphorylation, whereas unsaturated fatty acids are neutral or stimulatory. These findings define mechanisms important for muscle glucose metabolism and optimal insulin responsiveness. Potential human relevance is suggested by genome-wide analysis and RNA sequencing data that associate genetically determined low muscle CD36 expression to incidence of type 2 diabetes.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
20 MeSH Terms
The Vasculature in Prediabetes.
Wasserman DH, Wang TJ, Brown NJ
(2018) Circ Res 122: 1135-1150
MeSH Terms: Angiotensin-Converting Enzyme Inhibitors, Animals, Blood Vessels, Cardiovascular Diseases, Combined Modality Therapy, Diabetes Mellitus, Type 2, Diet, Reducing, Disease Progression, Endothelium, Vascular, Extracellular Matrix, Fatty Acids, Nonesterified, Fibrinolysis, Glucose, Humans, Hyperglycemia, Hypoglycemic Agents, Inflammation, Insulin Resistance, Life Style, Metabolic Syndrome, Mice, MicroRNAs, Microcirculation, Muscle, Skeletal, Obesity, Prediabetic State, Risk, Weight Loss
Show Abstract · Added March 26, 2019
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
© 2018 American Heart Association, Inc.
1 Communities
0 Members
0 Resources
28 MeSH Terms
Clinical Features Associated With Nascent Left Ventricular Diastolic Dysfunction in a Population Aged 40 to 55 Years.
Mosley JD, Levinson RT, Brittain EL, Gupta DK, Farber-Eger E, Shaffer CM, Denny JC, Roden DM, Wells QS
(2018) Am J Cardiol 121: 1552-1557
MeSH Terms: Adult, Age Distribution, Cohort Studies, Databases, Factual, Diabetes Mellitus, Type 2, Echocardiography, Female, Heart Failure, Diastolic, Humans, Hypertension, Incidence, Kaplan-Meier Estimate, Linear Models, Male, Middle Aged, Multivariate Analysis, Prognosis, Retrospective Studies, Risk Assessment, Severity of Illness Index, Sex Distribution, Stroke Volume, Survival Analysis, United States, Ventricular Dysfunction, Left
Show Abstract · Added June 7, 2018
Diastolic dysfunction (DD), an abnormality in cardiac left ventricular (LV) chamber compliance, is associated with increased morbidity and mortality. Although DD has been extensively studied in older populations, co-morbidity patterns are less well characterized in middle-aged subjects. We screened 156,434 subjects with transthoracic echocardiogram reports available through Vanderbilt's electronic heath record and identified 6,612 subjects 40 to 55 years old with an LV ejection fraction ≥50% and diastolic function staging. We tested 452 incident and prevalent clinical diagnoses for associations with early-stage DD (n = 1,676) versus normal function. There were 44 co-morbid diagnoses associated with grade 1 DD including hypertension (odds ratio [OR] = 2.02, 95% confidence interval [CI] 1.78 to 2.28, p <5.3 × 10-29), type 2 diabetes (OR 1.96, 95% CI 1.68 to 2.29, p = 2.1 × 10-17), tachycardia (OR 1.38, 95% CI 0.53 to 2.19, p = 2.9 × 10-6), obesity (OR 1.76, 95% CI 1.51 to 2.06, p = 1.7 × 10-12), and clinical end points, including end-stage renal disease (OR 3.29, 95% CI 2.19 to 4.96, p = 1.2 × 10-8) and stroke (OR 1.5, 95% CI 1.12 to 2.02, p = 6.9 × 10-3). Among the 60 incident diagnoses associated with DD, heart failure with preserved ejection fraction (OR 4.63, 95% CI 3.39 to 6.32, p = 6.3 × 10-22) had the most significant association. Among subjects with normal diastolic function and blood pressure at baseline, a blood pressure measurement in the hypertensive range at the time of the second echocardiogram was associated with progression to stage 1 DD (p = 0.04). In conclusion, DD was common among subjects 40 to 55 years old and was associated with a heavy burden of co-morbid disease.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age.
Creecy A, Uppuganti S, Unal M, Clay Bunn R, Voziyan P, Nyman JS
(2018) Bone 110: 204-214
MeSH Terms: Aging, Animals, Arginine, Bone Density, Chromatography, High Pressure Liquid, Diabetes Mellitus, Type 2, Femur, Fractures, Bone, Lysine, Male, Mice, Spectrum Analysis, Raman, X-Ray Microtomography
Show Abstract · Added February 19, 2018
Fracture risk increases as type 2 diabetes (T2D) progresses. With the rising incidence of T2D, in particular early-onset T2D, a representative pre-clinical model is needed to study mechanisms for treating or preventing diabetic bone disease. Towards that goal, we hypothesized that fracture resistance of bone from diabetic TallyHO mice decreases as the duration of diabetes increases. Femurs and lumbar vertebrae were harvested from male, TallyHO mice and male, non-diabetic SWR/J mice at 16weeks (n≥12 per strain) and 34weeks (n≥13 per strain) of age. As is characteristic of this model of juvenile T2D, the TallyHO mice were obese and hyperglycemic at an early age (5weeks and 10weeks of age, respectively). The femur mid-shaft of TallyHO mice had higher tissue mineral density and larger cortical area, as determined by micro-computed tomography, compared to the femur mid-shaft of SWR/J mice, irrespective of age. As such, the diabetic rodent bone was structurally stronger than the non-diabetic rodent bone, but the higher peak force endured by the diaphysis during three-point (3pt) bending was not independent of the difference in body weight. Upon accounting for the structure of the femur diaphysis, the estimated toughness at 16weeks and 34weeks was lower for the diabetic mice than for non-diabetic controls, but neither toughness nor estimated material strength and resistance to crack growth (3pt bending of contralateral notched femur) decreased as the duration of hyperglycemia increased. With respect to trabecular bone, there were no differences in the compressive strength of the L6 vertebral strength between diabetic and non-diabetic mice at both ages despite a lower trabecular bone volume for the TallyHO than for the SWR/J mice at 34weeks. Amide I sub-peak ratios as determined by Raman Spectroscopy analysis of the femur diaphysis suggested a difference in collagen structure between diabetic and non-diabetic mice, although there was not a significant difference in matrix pentosidine between the groups. Overall, the fracture resistance of bone in the TallyHO model of T2D did not progressively decrease with increasing duration of hyperglycemia. However, given the variability in hyperglycemia in this model, there were correlations between blood glucose levels and certain structural properties including peak force.
Copyright © 2018 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
13 MeSH Terms
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Wang X, Sterr M, Burtscher I, Chen S, Hieronimus A, Machicao F, Staiger H, Häring HU, Lederer G, Meitinger T, Cernilogar FM, Schotta G, Irmler M, Beckers J, Hrabě de Angelis M, Ray M, Wright CVE, Bakhti M, Lickert H
(2018) Mol Metab 9: 57-68
MeSH Terms: Cell Differentiation, Cells, Cultured, Chromatin Assembly and Disassembly, Diabetes Mellitus, Type 2, Enhancer Elements, Genetic, Genome-Wide Association Study, Hepatocyte Nuclear Factor 1-beta, Homeodomain Proteins, Humans, Induced Pluripotent Stem Cells, Insulin-Secreting Cells, Intercellular Signaling Peptides and Proteins, Membrane Proteins, Myeloid Ecotropic Viral Integration Site 1 Protein, Polymorphism, Single Nucleotide, Protein Binding, Regulatory Factor X Transcription Factors, Trans-Activators, Transcription Factor 7-Like 2 Protein
Show Abstract · Added February 6, 2018
OBJECTIVE - Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.
METHODS - In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions.
RESULTS - ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in the literature in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand of the Notch receptor DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function, respectively. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes.
CONCLUSIONS - Our data provide stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
1 Communities
0 Members
0 Resources
19 MeSH Terms
Mitochondrial Haplogroups Modify the Effect of Diabetes Duration and HbA1c on Proliferative Diabetic Retinopathy Risk in Patients With Type 2 Diabetes.
Mitchell SL, Neininger AC, Bruce CN, Chocron IM, Bregman JA, Estopinal CB, Muhammad A, Umfress AC, Jarrell KL, Warden C, Harlow PA, Wellons M, Samuels DC, Brantley MA
(2017) Invest Ophthalmol Vis Sci 58: 6481-6488
MeSH Terms: Aged, Blood Glucose, Case-Control Studies, DNA, Mitochondrial, Diabetes Mellitus, Type 2, Diabetic Retinopathy, European Continental Ancestry Group, Female, Glycated Hemoglobin A, Haplotypes, Humans, Male, Mitochondria, Polymorphism, Single Nucleotide, Risk Factors, United States
Show Abstract · Added March 21, 2018
Purpose - We previously demonstrated an association between European mitochondrial haplogroups and proliferative diabetic retinopathy (PDR). The purpose of this study was to determine how the relationship between these haplogroups and both diabetes duration and hyperglycemia, two major risk factors for diabetic retinopathy (DR), affect PDR prevalence.
Methods - Our population consisted of patients with type 2 diabetes with (n = 377) and without (n = 480) DR. A Kruskal-Wallis test was used to compare diabetes duration and hemoglobin A1c (HbA1c) among mitochondrial haplogroups. Logistic regressions were performed to investigate diabetes duration and HbA1c as risk factors for PDR in the context of European mitochondrial haplogroups.
Results - Neither diabetes duration nor HbA1c differed among mitochondrial haplogroups. Among DR patients from haplogroup H, longer diabetes duration and increasing HbA1c were significant risk factors for PDR (P = 0.0001 and P = 0.011, respectively). Neither diabetes duration nor HbA1c was a significant risk factor for PDR in DR patients from haplogroup UK.
Conclusions - European mitochondrial haplogroups modify the effects of diabetes duration and HbA1c on PDR risk in patients with type 2 diabetes. In our patient population, longer diabetes duration and higher HbA1c increased PDR risk in patients from haplogroup H, but did not affect PDR risk in patients from haplogroup UK. This relationship has not been previously demonstrated and may explain, in part, why some patients with nonproliferative DR develop PDR and others do not, despite similar diabetes duration and glycemic control.
0 Communities
1 Members
0 Resources
16 MeSH Terms