Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 213

Publication Record

Connections

Pancreas Volume Declines During the First Year After Diagnosis of Type 1 Diabetes and Exhibits Altered Diffusion at Disease Onset.
Virostko J, Williams J, Hilmes M, Bowman C, Wright JJ, Du L, Kang H, Russell WE, Powers AC, Moore DJ
(2019) Diabetes Care 42: 248-257
MeSH Terms: Adolescent, Adult, Atrophy, Autoantibodies, Case-Control Studies, Child, Child, Preschool, Cohort Studies, Diabetes Mellitus, Type 1, Female, Glucose Tolerance Test, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Organ Size, Pancreas, Time Factors, Young Adult
Show Abstract · Added December 18, 2018
OBJECTIVE - This study investigated the temporal dynamics of pancreas volume and microstructure in children and adolescents with recent-onset type 1 diabetes (T1D) and individuals without diabetes, including a subset expressing autoantibodies associated with the early stages of T1D.
RESEARCH DESIGN AND METHODS - MRI was performed in individuals with recent-onset stage 3 T1D ( = 51; median age 13 years) within 100 days after diagnosis (mean 67 days), 6 months, and 1 year postdiagnosis. Longitudinal MRI measurements were also made in similarly aged control participants ( = 57) and in autoantibody-positive individuals without diabetes ( = 20). The MRI protocol consisted of anatomical imaging to determine pancreas volume and quantitative MRI protocols interrogating tissue microstructure and composition.
RESULTS - Within 100 days of diabetes onset, individuals with T1D had a smaller pancreas (median volume 28.6 mL) than control participants (median volume 48.4 mL; < 0.001), including when normalized by individual weight ( < 0.001). Longitudinal measurements of pancreas volume increased in control participants over the year, consistent with adolescent growth, but pancreas volume declined over the first year after T1D diagnosis ( < 0.001). In multiple autoantibody-positive individuals, the pancreas volume was significantly larger than that of the T1D cohort ( = 0.017) but smaller than that of the control cohort ( = 0.04). Diffusion-weighted MRI showed that individuals with recent-onset T1D had a higher apparent diffusion coefficient ( = 0.012), suggesting a loss of cellular structural integrity, with heterogeneous pancreatic distribution.
CONCLUSIONS - These results indicate that pancreas volume is decreased in stages 1, 2, and 3 of T1D and decreases during the first year after diabetes onset and that this loss of pancreatic volume is accompanied by microstructural changes.
© 2018 by the American Diabetes Association.
1 Communities
3 Members
0 Resources
19 MeSH Terms
Sleep in Teens With Type 1 Diabetes: Perspectives From Adolescents and Their Caregivers.
Bergner EM, Williams R, Hamburger ER, Lyttle M, Davis AC, Malow B, Simmons JH, Lybarger C, Capin R, Jaser SS
(2018) Diabetes Educ 44: 541-548
MeSH Terms: Adolescent, Caregivers, Diabetes Mellitus, Type 1, Female, Humans, Male, Perception, Qualitative Research, Sleep, Sleep Wake Disorders
Show Abstract · Added January 30, 2019
PURPOSE - The purpose of this study is to identify barriers, facilitators, and consequences of obtaining sufficient sleep in adolescents with type 1 diabetes.
METHODS - Semistructured interviews were conducted with 25 adolescents (52% female, mean age = 15.6 years) and 25 caregivers. Interviews were transcribed and coded using Atlas.ti. A thematic analytic approach was used to identify and organize significant patterns of meaning (themes) and interpret themes across the data.
RESULTS - Several barriers were identified, with the most common being the use of electronics before bed and sleep disturbances related to diabetes management. Caregivers described strategies for helping adolescents achieve sufficient sleep, such as enforcing bedtimes and limiting distractions, but many adolescents could not identify facilitators of sleep. Weekday/weekend discrepancies in sleep timing were commonly disclosed.
CONCLUSIONS - This study is the first to examine the perceptions of barriers and facilitators to obtaining sufficient sleep in adolescents with T1D and their caregivers. Results have the potential to inform providers' recommendations regarding sleep, including possible interventions to promote sleep in this high-risk population.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice.
Wilson CS, Chhabra P, Marshall AF, Morr CV, Stocks BT, Hoopes EM, Bonami RH, Poffenberger G, Brayman KL, Moore DJ
(2018) Diabetes 67: 2349-2360
MeSH Terms: Animals, B-Lymphocytes, Diabetes Mellitus, Type 1, Immunoglobulin M, Mice, Mice, Inbred NOD, T-Lymphocytes, Regulatory
Show Abstract · Added August 23, 2018
Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgM) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes.
Triolo TM, Fouts A, Pyle L, Yu L, Gottlieb PA, Steck AK, Type 1 Diabetes TrialNet Study Group
(2019) Diabetes Care 42: 192-199
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Mellitus, Type 1, Disease Progression, Diseases in Twins, Environment, Female, Genetic Predisposition to Disease, Glutamate Decarboxylase, Humans, Insulin, Islets of Langerhans, Male, Mass Screening, Risk Factors, Seroepidemiologic Studies, Siblings, Twins, Twins, Dizygotic, Twins, Monozygotic, Young Adult
Show Abstract · Added August 15, 2018
OBJECTIVE - There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings.
RESEARCH DESIGN AND METHODS - Subjects from the TrialNet Pathway to Prevention Study ( = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years.
RESULTS - At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all < 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody-positive, 13% for single autoantibody-positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody-positive, 12% for single autoantibody-positive, and 0.5% for initially autoantibody-negative subjects.
CONCLUSIONS - Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody-positive identical twins and multiple autoantibody-positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA in New-Onset Type 1 Diabetes.
Haller MJ, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Miller JL, Atkinson MA, Becker DJ, Baidal D, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell W, Wilson DM, Greenbaum CJ, Type 1 Diabetes TrialNet ATG-GCSF Study Group
(2018) Diabetes Care 41: 1917-1925
MeSH Terms: Adolescent, Adult, Antilymphocyte Serum, C-Peptide, Child, Cytoprotection, Diabetes Mellitus, Type 1, Dose-Response Relationship, Drug, Double-Blind Method, Drug Therapy, Combination, Female, Glycated Hemoglobin A, Granulocyte Colony-Stimulating Factor, Humans, Insulin-Secreting Cells, Male, Pilot Projects, Polyethylene Glycols, Recombinant Proteins, Young Adult
Show Abstract · Added May 2, 2019
OBJECTIVE - A pilot study suggested that combination therapy with low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte colony-stimulating factor (GCSF) preserves C-peptide in established type 1 diabetes (T1D) (duration 4 months to 2 years). We hypothesized that ) low-dose ATG/GCSF or ) low-dose ATG alone would slow the decline of β-cell function in patients with new-onset T1D (duration <100 days).
RESEARCH DESIGN AND METHODS - A three-arm, randomized, double-masked, placebo-controlled trial was performed by the Type 1 Diabetes TrialNet Study Group in 89 subjects: 29 subjects randomized to ATG (2.5 mg/kg intravenously) followed by pegylated GCSF (6 mg subcutaneously every 2 weeks for 6 doses), 29 to ATG alone (2.5 mg/kg), and 31 to placebo. The primary end point was mean area under the curve (AUC) C-peptide during a 2-h mixed-meal tolerance test 1 year after initiation of therapy. Significance was defined as one-sided value < 0.025.
RESULTS - The 1-year mean AUC C-peptide was significantly higher in subjects treated with ATG (0.646 nmol/L) versus placebo (0.406 nmol/L) ( = 0.0003) but not in those treated with ATG/GCSF (0.528 nmol/L) versus placebo ( = 0.031). HbA was significantly reduced at 1 year in subjects treated with ATG and ATG/GCSF, = 0.002 and 0.011, respectively.
CONCLUSIONS - Low-dose ATG slowed decline of C-peptide and reduced HbA in new-onset T1D. Addition of GCSF did not enhance C-peptide preservation afforded by low-dose ATG. Future studies should be considered to determine whether low-dose ATG alone or in combination with other agents may prevent or delay the onset of the disease.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
MeSH Terms
A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk.
Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA, Type 1 Diabetes TrialNet Study Group
(2018) Diabetes Care 41: 1887-1894
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Complications, Diabetes Mellitus, Type 1, Disease Progression, Female, Genetic Predisposition to Disease, Genotype, HLA-DQ Antigens, Humans, Infant, Islets of Langerhans, Male, Middle Aged, Polymorphism, Single Nucleotide, Prognosis, Risk Factors, Young Adult
Show Abstract · Added July 23, 2018
OBJECTIVE - We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals.
RESEARCH DESIGN AND METHODS - We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients' relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2-51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial-Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables.
RESULTS - Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06-1.6; = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS >0.295, 95% CI 1.47-3.51; = 0.0002).
CONCLUSIONS - The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Evidence for the Role of the Cecal Microbiome in Maintenance of Immune Regulation and Homeostasis.
Chhabra P, Spano AJ, Bowers D, Ren T, Moore DJ, Timko MP, Wu M, Brayman KL
(2018) Ann Surg 268: 541-549
MeSH Terms: Animals, Cecum, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Female, Gastrointestinal Microbiome, Homeostasis, Humans, Immunoglobulin M, Mice, Mice, Inbred NOD
Show Abstract · Added July 12, 2018
OBJECTIVE (S) - Our objective was to investigate alterations in the cecal microbial composition during the development of type 1 diabetes (T1D) with or without IgM therapy, and correlate these alterations with the corresponding immune profile.
METHODS - (1) Female nonobese diabetic (NOD) mice treated with IgM or saline (n = 20/group) were divided into 5-week-old nondiabetic; 9 to 12-week-old prehyperglycemic stage-1; ≥13-week-old prehyperglycemic stage-2; and diabetic groups. 16S rRNA libraries were prepared from bacterial DNA and deep-sequenced. (2) New-onset diabetic mice were treated with IgM (200 μg on Days 1, 3, and 5) and their blood glucose monitored for 2 months.
RESULTS - Significant dysbiosis was observed in the cecal microbiome with the progression of T1D development. The alteration in microbiome composition was characterized by an increase in the bacteroidetes:firmicutes ratio. In contrast, IgM conserved normal bacteroidetes:firmicutes ratio and this effect was long-lasting. Furthermore, oral gavage using cecal content from IgM-treated mice significantly diminished the incidence of diabetes compared with controls, indicating that IgM specifically affected mucosa-associated microbes, and that the affect was causal and not an epiphenomenon. Also, regulatory immune cell populations (myeloid-derived suppressor cells and regulatory T cells) were expanded and insulin autoantibody production diminished in the IgM-treated mice. In addition, IgM therapy reversed hyperglycemia in 70% of new-onset diabetic mice (n = 10) and the mice remained normoglycemic for the entire post-treatment observation period.
CONCLUSIONS - The cecal microbiome appears to be important in maintaining immune homeostasis and normal immune responses.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Anti-Insulin B Cells Are Poised for Antigen Presentation in Type 1 Diabetes.
Felton JL, Maseda D, Bonami RH, Hulbert C, Thomas JW
(2018) J Immunol 201: 861-873
MeSH Terms: Animals, Antigen Presentation, Autoantibodies, Autoantigens, B-Lymphocyte Subsets, Diabetes Mellitus, Type 1, Female, Immune Tolerance, Inflammation, Insulin, Insulin Antibodies, Lymphocyte Activation, Male, Mice, Mice, Inbred NOD, Mice, Transgenic, Receptors, Antigen, B-Cell
Show Abstract · Added July 20, 2018
Early breaches in B cell tolerance are central to type 1 diabetes progression in mouse and man. Conventional BCR transgenic mouse models (VH125.Tg NOD) reveal the power of B cell specificity to drive disease as APCs. However, in conventional fixed IgM models, comprehensive assessment of B cell development is limited. To provide more accurate insight into the developmental and functional fates of anti-insulin B cells, we generated a new NOD model (V125NOD) in which anti-insulin VDJH125 is targeted to the IgH chain locus to generate a small (1-2%) population of class switch-competent insulin-binding B cells. Tracking of this rare population in a polyclonal repertoire reveals that anti-insulin B cells are preferentially skewed into marginal zone and late transitional subsets known to have increased sensitivity to proinflammatory signals. Additionally, IL-10 production, characteristic of regulatory B cell subsets, is increased. In contrast to conventional models, class switch-competent anti-insulin B cells proliferate normally in response to mitogenic stimuli but remain functionally silent for insulin autoantibody production. Diabetes development is accelerated, which demonstrates the power of anti-insulin B cells to exacerbate disease without differentiation into Ab-forming or plasma cells. Autoreactive T cell responses in V125NOD mice are not restricted to insulin autoantigens, as evidenced by increased IFN-γ production to a broad array of diabetes-associated epitopes. Together, these results independently validate the pathogenic role of anti-insulin B cells in type 1 diabetes, underscore their diverse developmental fates, and demonstrate the pathologic potential of coupling a critical β cell specificity to predominantly proinflammatory Ag-presenting B cell subsets.
Copyright © 2018 by The American Association of Immunologists, Inc.
1 Communities
0 Members
0 Resources
17 MeSH Terms
Engagement with a Text-Messaging Intervention Improves Adherence in Adolescents with Type 1 Diabetes: Brief Report.
Zhang S, Hamburger E, Kahanda S, Lyttle M, Williams R, Jaser SS
(2018) Diabetes Technol Ther 20: 386-389
MeSH Terms: Adolescent, Blood Glucose, Diabetes Mellitus, Type 1, Female, Humans, Hypoglycemic Agents, Insulin, Male, Medication Adherence, Text Messaging, Treatment Outcome
Show Abstract · Added January 30, 2019
Adherence to diabetes management is a challenge for adolescents with type 1 diabetes (T1D). Positive psychology interventions have improved adherence to treatment recommendations in adults with chronic health conditions but have not been widely tested in pediatric populations. We hypothesized that higher engagement with a text-messaging intervention to promote positive affect would increase the effects on diabetes management among adolescents with T1D. Adolescents with T1D (n = 48) and their caregivers were randomized to either an attention control condition or a novel positive psychology intervention delivered through personalized automated text messaging. We examined rates of engagement (percent response to text messages) in relation to demographic factors, and we explored the effect of engagement in relation to adherence and glycemic control. Adolescent engagement was good (mean response rate of 76%) over the 8-week intervention. Engagement was related to adolescents' gender, race, baseline glycemic control, and blood glucose monitoring, but not to treatment type (pump vs. injection), diabetes duration, age, or household income. There was a significant effect of level of engagement on better caregiver-reported adherence, but adolescents' engagement was not related to self-reported adherence or glycemic control. These results indicate feasibility and initial efficacy of using automated text-messaging to deliver an intervention aimed at promoting adherence in adolescents with T1D.
0 Communities
2 Members
0 Resources
MeSH Terms
Diabetes-specific family conflict: Informant discrepancies and the impact of parental factors.
Savin KL, Hamburger ER, Monzon AD, Patel NJ, Perez KM, Lord JH, Jaser SS
(2018) J Fam Psychol 32: 157-163
MeSH Terms: Adolescent, Adult, Clinical Trials as Topic, Diabetes Mellitus, Type 1, Family Conflict, Female, Humans, Male, Parent-Child Relations, Quality of Life, Risk Factors, Self-Management
Show Abstract · Added May 15, 2018
Family conflict in adolescents with type 1 diabetes (T1D) has been linked to worse disease management (i.e., glycemic control, adherence to treatment regimen) and reduced quality of life. We sought to examine parental risk factors associated with increased levels of diabetes-specific family conflict and to investigate the discrepancies between parent and adolescent reports of conflict. Adolescents with T1D and their parents (N = 120 dyads) completed measures of diabetes-specific family conflict. Adolescents also reported on health-related quality of life, and parents reported on demographic information. Clinical data were obtained from adolescents' medical records. Adolescents reported significantly greater levels of conflict than their parents around direct diabetes management tasks (e.g., checking blood sugars) and indirect management tasks (e.g., carrying supplies for high or low blood sugars). Several demographic factors were associated with family conflict, including parental education, marital status, and household income. Discrepancies between parent and adolescent reports of family conflict were significantly associated with diabetes-related outcomes. Specifically, higher quality of life was related to discrepancies between parent and adolescent reports of conflict around indirect management tasks. In addition, poorer glycemic control was related to discrepancies between parent and adolescent reports of family conflict around direct diabetes management tasks. These results support obtaining both the adolescent and parent report of conflict for unique information regarding family functioning. (PsycINFO Database Record
(c) 2018 APA, all rights reserved).
0 Communities
2 Members
0 Resources
12 MeSH Terms