Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 906

Publication Record

Connections

A key interaction with RPA orients XPA in NER complexes.
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ
(2020) Nucleic Acids Res 48: 2173-2188
MeSH Terms: DNA, DNA Damage, DNA Repair, DNA, Single-Stranded, DNA-Binding Proteins, Humans, Magnetic Resonance Spectroscopy, Models, Molecular, Protein Binding, Replication Protein A, Xeroderma Pigmentosum Group A Protein
Show Abstract · Added March 11, 2020
The XPA protein functions together with the single-stranded DNA (ssDNA) binding protein RPA as the central scaffold to ensure proper positioning of repair factors in multi-protein nucleotide excision repair (NER) machinery. We previously determined the structure of a short motif in the disordered XPA N-terminus bound to the RPA32C domain. However, a second contact between the XPA DNA-binding domain (XPA DBD) and the RPA70AB tandem ssDNA-binding domains, which is likely to influence the orientation of XPA and RPA on the damaged DNA substrate, remains poorly characterized. NMR was used to map the binding interfaces of XPA DBD and RPA70AB. Combining NMR and X-ray scattering data with comprehensive docking and refinement revealed how XPA DBD and RPA70AB orient on model NER DNA substrates. The structural model enabled design of XPA mutations that inhibit the interaction with RPA70AB. These mutations decreased activity in cell-based NER assays, demonstrating the functional importance of XPA DBD-RPA70AB interaction. Our results inform ongoing controversy about where XPA is bound within the NER bubble, provide structural insights into the molecular basis for malfunction of disease-associated XPA missense mutations, and contribute to understanding of the structure and mechanical action of the NER machinery.
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
0 Communities
1 Members
0 Resources
11 MeSH Terms
The anti-parasitic agent suramin and several of its analogues are inhibitors of the DNA binding protein Mcm10.
Paulson CN, John K, Baxley RM, Kurniawan F, Orellana K, Francis R, Sobeck A, Eichman BF, Chazin WJ, Aihara H, Georg GI, Hawkinson JE, Bielinsky AK
(2019) Open Biol 9: 190117
MeSH Terms: Animals, Cell Survival, DNA Replication, DNA-Binding Proteins, Drug Discovery, Enzyme Inhibitors, Gene Expression, High-Throughput Nucleotide Sequencing, Humans, Kinetics, Minichromosome Maintenance Proteins, Molecular Structure, Protein Binding, Suramin, Xenopus
Show Abstract · Added August 26, 2019
Minichromosome maintenance protein 10 (Mcm10) is essential for DNA unwinding by the replisome during S phase. It is emerging as a promising anti-cancer target as MCM10 expression correlates with tumour progression and poor clinical outcomes. Here we used a competition-based fluorescence polarization (FP) high-throughput screening (HTS) strategy to identify compounds that inhibit Mcm10 from binding to DNA. Of the five active compounds identified, only the anti-parasitic agent suramin exhibited a dose-dependent decrease in replication products in an in vitro replication assay. Structure-activity relationship evaluation identified several suramin analogues that inhibited ssDNA binding by the human Mcm10 internal domain and full-length Xenopus Mcm10, including analogues that are selective for Mcm10 over human RPA. Binding of suramin analogues to Mcm10 was confirmed by surface plasmon resonance (SPR). SPR and FP affinity determinations were highly correlated, with a similar rank between affinity and potency for killing colon cancer cells. Suramin analogue NF157 had the highest human Mcm10 binding affinity (FP K 170 nM, SPR K 460 nM) and cell activity (IC 38 µM). Suramin and its analogues are the first identified inhibitors of Mcm10 and probably block DNA binding by mimicking the DNA sugar phosphate backbone due to their extended, polysulfated anionic structures.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Protection of abasic sites during DNA replication by a stable thiazolidine protein-DNA cross-link.
Thompson PS, Amidon KM, Mohni KN, Cortez D, Eichman BF
(2019) Nat Struct Mol Biol 26: 613-618
MeSH Terms: Crystallography, X-Ray, DNA Repair, DNA Replication, DNA, Single-Stranded, DNA-Binding Proteins, Escherichia coli, Escherichia coli Proteins, Humans, Molecular Docking Simulation, Protein Conformation, Thiazolidines
Show Abstract · Added August 26, 2019
Abasic (AP) sites are one of the most common DNA lesions that block replicative polymerases. 5-hydroxymethylcytosine binding, embryonic stem cell-specific protein (HMCES) recognizes and processes these lesions in the context of single-stranded DNA (ssDNA). A HMCES DNA-protein cross-link (DPC) intermediate is thought to shield the AP site from endonucleases and error-prone polymerases. The highly evolutionarily conserved SOS-response associated peptidase (SRAP) domain of HMCES and its Escherichia coli ortholog YedK mediate lesion recognition. Here we uncover the basis of AP site protection by SRAP domains from a crystal structure of the YedK DPC. YedK forms a stable thiazolidine linkage between a ring-opened AP site and the α-amino and sulfhydryl substituents of its amino-terminal cysteine residue. The thiazolidine linkage explains the remarkable stability of the HMCES DPC, its resistance to strand cleavage and the proteolysis requirement for resolution. Furthermore, its structure reveals that HMCES has specificity for AP sites in ssDNA at junctions found when replicative polymerases encounter the AP lesion.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Is a Tumor Suppressor Gene in Colorectal Cancer.
Chen MS, Lo YH, Chen X, Williams CS, Donnelly JM, Criss ZK, Patel S, Butkus JM, Dubrulle J, Finegold MJ, Shroyer NF
(2019) Mol Cancer Res 17: 697-708
MeSH Terms: Animals, Cell Line, Tumor, Colorectal Neoplasms, DNA-Binding Proteins, Genes, Tumor Suppressor, HCT116 Cells, HEK293 Cells, Heterografts, Humans, Male, Mice, Mice, Inbred NOD, Transcription Factors
Show Abstract · Added April 15, 2019
Colorectal cancer is the third most common cancer and the third leading cause of cancer death in the United States. Growth factor-independent 1 (GFI1) is a zinc finger transcriptional repressor responsible for controlling secretory cell differentiation in the small intestine and colon. GFI1 plays a significant role in the development of human malignancies, including leukemia, lung cancer, and prostate cancer. However, the role of GFI1 in colorectal cancer progression is largely unknown. Our results demonstrate that RNA and protein expression of GFI1 are reduced in advanced-stage nonmucinous colorectal cancer. Subcutaneous tumor xenograft models demonstrated that the reexpression of GFI1 in 4 different human colorectal cancer cell lines inhibits tumor growth. To further investigate the role of Gfi1 in colorectal tumorigenesis, we developed transgenic mice harboring a deletion of Gfi1 in the colon driven by CDX2-cre (Gfi1; CDX2-cre) and crossed them with Apc mice (Apc; Gfi1; CDX2-cre). Loss of Gfi1 significantly increased the total number of colorectal adenomas compared with littermate controls with an APC mutation alone. Furthermore, we found that compound (Apc; Gfi1; CDX2-cre) mice develop larger adenomas, invasive carcinoma, as well as hyperplastic lesions expressing the neuroendocrine marker chromogranin A, a feature that has not been previously described in APC-mutant tumors in mice. Collectively, these results demonstrate that acts as a tumor suppressor gene in colorectal cancer, where deficiency of Gfi1 promotes malignancy in the colon. IMPLICATIONS: These findings reveal that GFI1 functions as a tumor suppressor gene in colorectal tumorigenesis.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
13 MeSH Terms
HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA.
Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, Eichman BF, Thompson PS, Mehta KPM, Cortez D
(2019) Cell 176: 144-153.e13
MeSH Terms: 5-Methylcytosine, Apurinic Acid, DNA, DNA Damage, DNA Repair, DNA Replication, DNA, Single-Stranded, DNA-Binding Proteins, Endonucleases, Escherichia coli, Polynucleotides, Proliferating Cell Nuclear Antigen
Show Abstract · Added August 26, 2019
Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal.
Warren GM, Stein RA, Mchaourab HS, Eichman BF
(2018) Int J Mol Sci 19:
MeSH Terms: DNA, DNA Helicases, DNA Replication, DNA-Binding Proteins, Models, Molecular, Molecular Conformation, Mutation, Nucleic Acid Conformation, Protein Binding, Protein Interaction Domains and Motifs, Structure-Activity Relationship
Show Abstract · Added August 26, 2019
RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria. The protein contains a fork recognition ("wedge") domain that binds branched DNA and a superfamily II (SF2) ATPase motor that drives translocation on double-stranded (ds)DNA. The mechanism by which the wedge and motor domains collaborate to catalyze fork reversal in RecG and analogous eukaryotic fork remodelers is unknown. Here, we used electron paramagnetic resonance (EPR) spectroscopy to probe conformational changes between the wedge and ATPase domains in response to fork DNA binding by RecG. Upon binding DNA, the ATPase-C lobe moves away from both the wedge and ATPase-N domains. This conformational change is consistent with a model of RecG fully engaged with a DNA fork substrate constructed from a crystal structure of RecG bound to a DNA junction together with recent cryo-electron microscopy (EM) structures of chromatin remodelers in complex with dsDNA. We show by mutational analysis that a conserved loop within the translocation in RecG (TRG) motif that was unstructured in the RecG crystal structure is essential for fork reversal and DNA-dependent conformational changes. Together, this work helps provide a more coherent model of fork binding and remodeling by RecG and related eukaryotic enzymes.
0 Communities
1 Members
0 Resources
MeSH Terms
Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila.
Munden A, Rong Z, Sun A, Gangula R, Mallal S, Nordman JT
(2018) Elife 7:
MeSH Terms: Amino Acid Sequence, Animals, Carrier Proteins, DNA, DNA Replication, DNA-Binding Proteins, Drosophila Proteins, Drosophila melanogaster, Gene Dosage, Genome, Insect, Heat-Shock Response, Heterochromatin, Mutation, Protein Binding, Protein Domains, Reproducibility of Results, Salivary Glands
Show Abstract · Added March 3, 2020
Control of DNA copy number is essential to maintain genome stability and ensure proper cell and tissue function. In polyploid cells, the SNF2-domain-containing SUUR protein inhibits replication fork progression within specific regions of the genome to promote DNA underreplication. While dissecting the function of SUUR's SNF2 domain, we identified an interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the replication timing program. We demonstrate that repression of DNA replication is dependent on Rif1. Rif1 localizes to active replication forks in a partially SUUR-dependent manner and directly regulates replication fork progression. Importantly, SUUR associates with replication forks in the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression. Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication fork progression.
© 2018, Munden et al.
0 Communities
1 Members
0 Resources
MeSH Terms
The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
Chavez DA, Greer BH, Eichman BF
(2018) J Biol Chem 293: 8484-8494
MeSH Terms: DNA Helicases, DNA Replication, DNA, Single-Stranded, DNA-Binding Proteins, Humans, Protein Domains, Transcription Factors
Show Abstract · Added August 26, 2019
Helicase-like transcription factor (HLTF) is a central mediator of the DNA damage response and maintains genome stability by regressing stalled replication forks. The N-terminal HIRAN domain binds specifically to the 3'-end of single-stranded DNA (ssDNA), and disrupting this function interferes with fork regression as well as replication fork progression in cells under replication stress. Here, we investigated the mechanism by which the HIRAN-ssDNA interaction facilitates fork remodeling. Our results indicated that HIRAN capture of a denatured nascent leading 3'-end directs specific binding of HLTF to forks. DNase footprinting revealed that HLTF binds to the parental duplex ahead of the fork and at the leading edge behind the fork. Moreover, we found that the HIRAN domain is important for initiating regression of forks when both nascent strands are at the junction, but is dispensable when forks contain ssDNA regions on either template strand. We also found that HLTF catalyzes fork restoration from a partially regressed structure in a HIRAN-dependent manner. Thus, HIRAN serves as a substrate-recognition domain to properly orient the ATPase motor domain at stalled and regressed forks and initiates fork remodeling by guiding formation of a four-way junction. We discuss how these activities compare with those of two related fork remodelers, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) and zinc finger RANBP2 type-containing 3 (ZRANB3) to provide insight into their nonredundant roles in DNA damage tolerance.
© 2018 Chavez et al.
0 Communities
1 Members
0 Resources
MeSH Terms
Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa.
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF
(2018) BMC Evol Biol 18: 51
MeSH Terms: Animals, DNA-Binding Proteins, Evolution, Molecular, GTP-Binding Protein alpha Subunits, Gene Duplication, Nucleotide Motifs, Phylogeny, Retroelements, Signal Transduction, Vertebrates
Show Abstract · Added March 21, 2020
BACKGROUND - Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete.
RESULTS - We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events.
CONCLUSIONS - Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
0 Communities
2 Members
0 Resources
MeSH Terms
Autochthonous tumors driven by loss have an ongoing requirement for the RBP2 histone demethylase.
McBrayer SK, Olenchock BA, DiNatale GJ, Shi DD, Khanal J, Jennings RB, Novak JS, Oser MG, Robbins AK, Modiste R, Bonal D, Moslehi J, Bronson RT, Neuberg D, Nguyen QD, Signoretti S, Losman JA, Kaelin WG
(2018) Proc Natl Acad Sci U S A 115: E3741-E3748
MeSH Terms: Alleles, Animals, DNA-Binding Proteins, Echocardiography, Enzyme Activation, Fibroblasts, Genes, Retinoblastoma, Heart Septal Defects, Histone Code, Integrases, Jumonji Domain-Containing Histone Demethylases, Mice, Mice, Inbred C57BL, Molecular Targeted Therapy, Neoplasm Proteins, Pituitary Neoplasms, Recombinant Fusion Proteins, Retinoblastoma Protein, Tamoxifen, Thyroid Neoplasms, Transgenes
Show Abstract · Added April 22, 2018
Inactivation of the retinoblastoma gene () product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline deletion significantly impedes tumorigenesis in mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by inactivation.
0 Communities
1 Members
0 Resources
21 MeSH Terms