Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 6 of 6

Publication Record


Phase II Study of Olaparib (AZD-2281) After Standard Systemic Therapies for Disseminated Colorectal Cancer.
Leichman L, Groshen S, O'Neil BH, Messersmith W, Berlin J, Chan E, Leichman CG, Cohen SJ, Cohen D, Lenz HJ, Gold P, Boman B, Fielding A, Locker G, Cason RC, Hamilton SR, Hochster HS
(2016) Oncologist 21: 172-7
MeSH Terms: Adult, Aged, Colorectal Neoplasms, DNA Methylation, DNA Mismatch Repair, Disease-Free Survival, Female, Humans, Male, Microsatellite Instability, Middle Aged, Phthalazines, Piperazines, Poly(ADP-ribose) Polymerase Inhibitors
Show Abstract · Added May 7, 2016
BACKGROUND - Effective new agents for patients with colorectal cancer (CRC) with disease progression during standard therapy regimens are needed. We hypothesized that poly ADP ribose polymerase (PARP) inhibitor therapy in patients with CRC and inefficient tumor DNA repair mechanisms, such as those with high-level microsatellite instability (MSI-H), would result in synthetic lethality.
METHODS - This was an open-label phase II trial testing olaparib 400 mg p.o. b.i.d. for patients with disseminated, measurable CRC failing standard therapies with centrally confirmed tumor MSI status. The primary endpoint was the tumor response, assessed by RECIST, version 1.0. The secondary endpoints were safety/toxicity, progression-free survival (PFS), and overall survival (OS).
RESULTS - Thirty-three patients (20 microsatellite stable [MSS], 13 MSI-H) were enrolled. The median age for all patients was 57 years and for MSS and MSI-H patients was 51 and 61 years, respectively. All patients received at least one 28-day cycle of olaparib. No patient had a complete or partial response. Nausea (48%), fatigue (36%), and vomiting (33%) were the most commonly reported treatment-related adverse events. The median PFS for all patients was 1.84 months. No statistically significant differences were found in the median PFS or OS for the MSS group compared with the MSI-H group.
CONCLUSION - Single-agent olaparib delivered after failure of standard systemic therapy did not demonstrate activity for CRC patients, regardless of microsatellite status. Future trials, testing PARP inhibitors in patients with CRC should focus on the use of DNA-damaging chemotherapy and/or radiation therapy, combined with PARP inhibitors, remembering the toxicity reported in the present study.
IMPLICATIONS FOR PRACTICE - Microsatellite instability (MSI-H) colorectal tumors exhibit hypermethylation in tumor mismatch repair genes, or have mutations in one or more of these genes resulting from a germ-line defect (Lynch syndrome). PARP inhibitors such as olaparib are most effective in tumors associated with inability to repair DNA damage. However, in this trial, single agent olaparib failed to elicit responses in patients with MSI-H colorectal tumors, and in those with microsatellite-stable tumors. It is possible that by adding olaparib to radiation therapy, or to a systemic DNA damaging agent, tumor lethality could be obtained. However, the price would be increased toxicity.
©AlphaMed Press.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair.
Halvey PJ, Wang X, Wang J, Bhat AA, Dhawan P, Li M, Zhang B, Liebler DC, Slebos RJ
(2014) Cancer Res 74: 387-97
MeSH Terms: Cell Growth Processes, Cell Line, Tumor, Colorectal Neoplasms, DNA Mismatch Repair, Humans, Proteomics, Sequence Analysis, Protein
Show Abstract · Added March 7, 2014
A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We used standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biologic replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein false discovery rate of 3.17% across all cell lines. Networks of coexpressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multisystem adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition in RKO cells, as evidenced by increased mobility and invasion properties compared with SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes.
0 Communities
4 Members
0 Resources
7 MeSH Terms
Distinct molecular features of colorectal cancer in Ghana.
Raskin L, Dakubo JC, Palaski N, Greenson JK, Gruber SB
(2013) Cancer Epidemiol 37: 556-61
MeSH Terms: African Americans, Colorectal Neoplasms, DNA Mismatch Repair, DNA, Neoplasm, Exons, Female, Genes, ras, Ghana, Humans, Immunohistochemistry, Male, Microsatellite Instability, Middle Aged, Molecular Epidemiology, Paraffin Embedding, Proto-Oncogene Proteins B-raf
Show Abstract · Added March 7, 2014
OBJECTIVES - While colorectal cancer (CRC) is common, its incidence significantly varies around the globe. The incidence of CRC in West Africa is relatively low, but it has a distinctive clinical pattern and its molecular characteristics have not been studied. This study is one of the first attempts to analyze molecular, genetic, and pathological characteristics of colorectal cancer in Ghana.
METHODS - DNA was extracted from microdissected tumor and adjacent normal tissue of 90 paraffin blocks of CRC cases (1997-2007) collected at the University of Ghana. Microsatellite instability (MSI) was determined using fragment analysis of ten microsatellite markers. We analyzed expression of mismatch repair (MMR) proteins by immunohistochemistry and sequenced exons 2 and 3 of KRAS and exon 15 of BRAF.
RESULTS - MSI analysis showed 41% (29/70) MSI-High, 20% (14/70) MSI-Low, and 39% (27/70) microsatellite-stable (MSS) tumors. Sequencing of KRAS exons 2 and 3 identified activating mutations in 32% (24/75) of tumors, and sequencing of BRAF exon 15, the location of the common activating mutation (V600), did not show mutations at codons 599 and 600 in 88 tumors.
CONCLUSIONS - Our study found a high frequency of MSI-High colorectal tumors (41%) in Ghana. While the frequency of KRAS mutations is comparable with other populations, absence of BRAF mutations is intriguing and would require further analysis of the molecular epidemiology of CRC in West Africa.
Copyright © 2013 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
TagRecon: high-throughput mutation identification through sequence tagging.
Dasari S, Chambers MC, Slebos RJ, Zimmerman LJ, Ham AJ, Tabb DL
(2010) J Proteome Res 9: 1716-26
MeSH Terms: Algorithms, Cell Line, Tumor, Chromatography, Liquid, Colonic Neoplasms, Computational Biology, DNA Mismatch Repair, Data Mining, Databases, Protein, Extracellular Matrix, Humans, Hydroxyproline, Models, Genetic, Mutation, Peptide Fragments, Peptide Mapping, Sequence Tagged Sites, Tandem Mass Spectrometry, Yeasts
Show Abstract · Added March 5, 2014
Shotgun proteomics produces collections of tandem mass spectra that contain all the data needed to identify mutated peptides from clinical samples. Identifying these sequence variations, however, has not been feasible with conventional database search strategies, which require exact matches between observed and expected sequences. Searching for mutations as mass shifts on specified residues through database search can incur significant performance penalties and generate substantial false positive rates. Here we describe TagRecon, an algorithm that leverages inferred sequence tags to identify unanticipated mutations in clinical proteomic data sets. TagRecon identifies unmodified peptides as sensitively as the related MyriMatch database search engine. In both LTQ and Orbitrap data sets, TagRecon outperformed state of the art software in recognizing sequence mismatches from data sets with known variants. We developed guidelines for filtering putative mutations from clinical samples, and we applied them in an analysis of cancer cell lines and an examination of colon tissue. Mutations were found in up to 6% of identified peptides, and only a small fraction corresponded to dbSNP entries. The RKO cell line, which is DNA mismatch repair deficient, yielded more mutant peptides than the mismatch repair proficient SW480 line. Analysis of colon cancer tumor and adjacent tissue revealed hydroxyproline modifications associated with extracellular matrix degradation. These results demonstrate the value of using sequence tagging algorithms to fully interrogate clinical proteomic data sets.
0 Communities
4 Members
0 Resources
18 MeSH Terms
Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway.
Vilar E, Mukherjee B, Kuick R, Raskin L, Misek DE, Taylor JM, Giordano TJ, Hanash SM, Fearon ER, Rennert G, Gruber SB
(2009) Clin Cancer Res 15: 2829-39
MeSH Terms: Algorithms, Antineoplastic Agents, Benzoquinones, Cell Cycle, Cell Line, Tumor, Chromones, Colorectal Neoplasms, Computational Biology, DNA Mismatch Repair, Drug Evaluation, Preclinical, Enzyme Inhibitors, Gene Expression Profiling, Humans, Hydroxamic Acids, Immunosuppressive Agents, Lactams, Macrocyclic, Microsatellite Instability, Morpholines, Phosphoinositide-3 Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Sirolimus
Show Abstract · Added March 5, 2014
PURPOSE - High-frequency microsatellite-instable (MSI-H) tumors account for approximately 15% of colorectal cancers. Therapeutic decisions for colorectal cancer are empirically based and currently do not emphasize molecular subclassification despite an increasing collection of gene expression information. Our objective was to identify low molecular weight compounds with preferential activity against MSI colorectal cancers using combined gene expression data sets.
EXPERIMENTAL DESIGN - Three expression/query signatures (discovery data set) characterizing MSI-H colorectal cancer were matched with information derived from changes induced in cell lines by 164 compounds using the systems biology tool "Connectivity Map." A series of sequential filtering and ranking algorithms were used to select the candidate compounds. Compounds were validated using two additional expression/query signatures (validation data set). Cytotoxic, cell cycle, and apoptosis effects of validated compounds were evaluated in a panel of cell lines.
RESULTS - Fourteen of the 164 compounds were validated as targeting MSI-H cell lines using the bioinformatics approach; rapamycin, LY-294002, 17-(allylamino)-17-demethoxygeldanamycin, and trichostatin A were the most robust candidate compounds. In vitro results showed that MSI-H cell lines due to hypermethylation of MLH1 are preferentially targeted by rapamycin (18.3 versus 4.4 mumol/L; P = 0.0824) and LY-294002 (15.02 versus 10.37 mumol/L; P = 0.0385) when compared with microsatellite-stable cells. Preferential activity was also observed in MSH2 and MSH6 mutant cells.
CONCLUSION - Our study shows that the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is of special relevance in mismatch repair-deficient colorectal cancer. In addition, we show that amalgamation of gene expression information across studies provides a robust approach for selection of potential therapies corresponding to specific groups of patients.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Pediatric duodenal cancer and biallelic mismatch repair gene mutations.
Roy S, Raskin L, Raymond VM, Thibodeau SN, Mody RJ, Gruber SB
(2009) Pediatr Blood Cancer 53: 116-20
MeSH Terms: Adaptor Proteins, Signal Transducing, Adenocarcinoma, Adenosine Triphosphatases, Adolescent, Antineoplastic Combined Chemotherapy Protocols, Chemotherapy, Adjuvant, Consanguinity, DNA Mismatch Repair, DNA Repair Enzymes, DNA-Binding Proteins, Duodenal Neoplasms, Female, Germ-Line Mutation, Humans, Lymphatic Metastasis, Male, Mismatch Repair Endonuclease PMS2, MutL Protein Homolog 1, MutS Homolog 2 Protein, Nuclear Proteins, Pancreatic Neoplasms, Pedigree, Radiotherapy, Adjuvant
Show Abstract · Added March 5, 2014
Gastrointestinal malignancies are extremely rare in the pediatric population, and duodenal cancers represent an even more unusual entity. Intestinal cancers in young adults and children have been observed to be associated with functional deficiencies of the mismatch repair (MMR) system causing a cancer-predisposition syndrome. We report the case of a 16-year-old female with duodenal adenocarcinoma and past history of medulloblastoma found to have a novel germline bialleleic truncating mutation (c.[949C>T]+[949C>T]) of the PMS2 gene.
Copyright 2009 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
23 MeSH Terms