Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 27

Publication Record

Connections

Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
Shi R, Shen XX, Rokas A, Eichman BF
(2018) Bioessays 40: e1800133
MeSH Terms: Archaea, Bacteria, Crystallography, X-Ray, DNA, DNA Damage, DNA Glycosylases, DNA Repair, Eukaryota, Protein Conformation
Show Abstract · Added August 26, 2019
DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl-DNA glycosylases AlkC and AlkD adopt a unique structure based on α-helical HEAT repeats. Both enzymes identify and excise their substrates without a base-flipping mechanism used by other glycosylases and nucleic acid processing proteins to access nucleobases that are otherwise stacked inside the double-helix. Consequently, these glycosylases act on a variety of cationic nucleobase modifications, including bulky adducts, not previously associated with BER. The related non-enzymatic HEAT-like repeat (HLR) proteins, AlkD2, and AlkF, have unique nucleic acid binding properties that expand the functions of this relatively new protein superfamily beyond DNA repair. Here, we review the phylogeny, biochemistry, and structures of the HLR proteins, which have helped broaden our understanding of the mechanisms by which DNA glycosylases locate and excise chemically modified DNA nucleobases.
© 2018 WILEY Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
Shi R, Mullins EA, Shen XX, Lay KT, Yuen PK, David SS, Rokas A, Eichman BF
(2018) EMBO J 37: 63-74
MeSH Terms: Adenine, Alkylation, Amino Acid Sequence, Bacillus cereus, Catalytic Domain, Crystallography, X-Ray, DNA Adducts, DNA Damage, DNA Glycosylases, DNA Repair, Models, Molecular, Protein Conformation, Sequence Homology
Show Abstract · Added March 21, 2018
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.
© 2017 The Authors.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Structure of a DNA glycosylase that unhooks interstrand cross-links.
Mullins EA, Warren GM, Bradley NP, Eichman BF
(2017) Proc Natl Acad Sci U S A 114: 4400-4405
MeSH Terms: Anti-Bacterial Agents, Bacterial Proteins, DNA Glycosylases, DNA, Bacterial, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Enzymologic, Models, Molecular, Mutation, Naphthalenes, Peptides, Protein Binding, Protein Conformation, Protein Folding, Streptomyces
Show Abstract · Added August 26, 2019
DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.
0 Communities
1 Members
0 Resources
MeSH Terms
A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
Parsons ZD, Bland JM, Mullins EA, Eichman BF
(2016) J Am Chem Soc 138: 11485-8
MeSH Terms: Bacillus cereus, Biocatalysis, DNA Glycosylases, DNA Repair, DNA, Bacterial
Show Abstract · Added April 7, 2017
DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair.
1 Communities
1 Members
0 Resources
5 MeSH Terms
The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF
(2015) Nature 527: 254-8
MeSH Terms: Bacillus cereus, Base Pairing, Biocatalysis, Catalytic Domain, Crystallography, X-Ray, DNA Adducts, DNA Damage, DNA Glycosylases, DNA Repair, Indoles, Models, Molecular, Pyrroles
Show Abstract · Added November 10, 2015
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.
1 Communities
1 Members
0 Resources
12 MeSH Terms
A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
Mullins EA, Shi R, Kotsch LA, Eichman BF
(2015) PLoS One 10: e0127733
MeSH Terms: Amino Acid Motifs, Amino Acid Sequence, DNA, DNA Damage, DNA Glycosylases, DNA Mutational Analysis, DNA Repair, Models, Molecular, Phylogeny, Protein Structure, Tertiary, Streptococcus mutans
Show Abstract · Added November 10, 2015
DNA glycosylases are important repair enzymes that eliminate a diverse array of aberrant nucleobases from the genomes of all organisms. Individual bacterial species often contain multiple paralogs of a particular glycosylase, yet the molecular and functional distinctions between these paralogs are not well understood. The recently discovered HEAT-like repeat (HLR) DNA glycosylases are distributed across all domains of life and are distinct in their specificity for cationic alkylpurines and mechanism of damage recognition. Here, we describe a number of phylogenetically diverse bacterial species with two orthologs of the HLR DNA glycosylase AlkD. One ortholog, which we designate AlkD2, is substantially less conserved. The crystal structure of Streptococcus mutans AlkD2 is remarkably similar to AlkD but lacks the only helix present in AlkD that penetrates the DNA minor groove. We show that AlkD2 possesses only weak DNA binding affinity and lacks alkylpurine excision activity. Mutational analysis of residues along this DNA binding helix in AlkD substantially reduced binding affinity for damaged DNA, for the first time revealing the importance of this structural motif for damage recognition by HLR glycosylases.
1 Communities
1 Members
0 Resources
11 MeSH Terms
Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.
Zdżalik D, Domańska A, Prorok P, Kosicki K, van den Born E, Falnes PØ, Rizzo CJ, Guengerich FP, Tudek B
(2015) DNA Repair (Amst) 30: 1-10
MeSH Terms: Adenine, AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase, AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase, Bacteria, Bacterial Proteins, Cytosine, DNA, DNA Adducts, DNA Glycosylases, DNA Repair, DNA Repair Enzymes, DNA, Single-Stranded, Dioxygenases, Escherichia coli, Escherichia coli Proteins, Guanine, Humans, Mixed Function Oxygenases, Mycobacterium tuberculosis, Rhizobium etli, Streptomyces, Substrate Specificity, Xanthomonas campestris
Show Abstract · Added January 7, 2016
AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins.
Copyright © 2015 Elsevier B.V. All rights reserved.
0 Communities
2 Members
0 Resources
23 MeSH Terms
Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.
Troll CJ, Adhikary S, Cueff M, Mitra I, Eichman BF, Camps M
(2014) Mutat Res 763-764: 64-73
MeSH Terms: Alkylation, DNA Glycosylases, DNA Repair, Escherichia coli, Genetic Complementation Test, Mutation, Saccharomyces cerevisiae, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added May 27, 2014
DNA glycosylases carry out the first step of base excision repair by removing damaged bases from DNA. The N3-methyladenine (3MeA) DNA glycosylases specialize in alkylation repair and are either constitutively expressed or induced by exposure to alkylating agents. To study the functional and evolutionary significance of constitutive versus inducible expression, we expressed two closely related yeast 3MeA DNA glycosylases - inducible Saccharomyces cerevisiae MAG and constitutive S. pombe Mag1 - in a glycosylase-deficient Escherichia coli strain. In both cases, constitutive expression conferred resistance to alkylating agent exposure. However, in the absence of exogenous alkylation, high levels of expression of both glycosylases were deleterious. We attribute this toxicity to excessive glycosylase activity, since suppressing spMag1 expression correlated with improved growth in liquid culture, and spMag1 mutants exhibiting decreased glycosylase activity showed improved growth and viability. Selection of a random spMag1 mutant library for increased survival in the presence of exogenous alkylation resulted in the selection of hypomorphic mutants, providing evidence for the presence of a genetic barrier to the evolution of enhanced glycosylase activity when constitutively expressed. We also show that low levels of 3MeA glycosylase expression improve fitness in our glycosylase-deficient host, implying that 3MeA glycosylase activity is likely necessary for repair of endogenous lesions. These findings suggest that 3MeA glycosylase activity is evolutionarily conserved for repair of endogenously produced alkyl lesions, and that inducible expression represents a common strategy to rectify deleterious effects of excessive 3MeA activity in the absence of exogenous alkylation challenge.
Copyright © 2014 Elsevier B.V. All rights reserved.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Looking for Waldo: a potential thermodynamic signature to DNA damage.
Gold B, Stone MP, Marky LA
(2014) Acc Chem Res 47: 1446-54
MeSH Terms: Base Pairing, Binding Sites, DNA, DNA Damage, DNA Glycosylases, DNA Repair, Kinetics, Nucleic Acid Conformation, Thermodynamics, Water
Show Abstract · Added May 29, 2014
DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a "thermodynamic signature" to DNA lesions that can be exploited in the initial search that requires differentiation between canonical DNA and DNA with a lesion. The differentiation between a lesion and a cognate lesion that is a substrate for a particular enzyme involves another layer of thermodynamic and kinetic factors.
0 Communities
1 Members
0 Resources
10 MeSH Terms
5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3.
Brooks SC, Fischer RL, Huh JH, Eichman BF
(2014) Biochemistry 53: 2525-32
MeSH Terms: 5-Methylcytosine, Arabidopsis, Arabidopsis Proteins, Base Sequence, DNA Glycosylases, DNA Primers, Models, Molecular, Nuclear Proteins, Polymerase Chain Reaction, Substrate Specificity
Show Abstract · Added May 27, 2014
Methylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases. Arabidopsis thaliana DME excises 5mC to activate expression of maternally imprinted genes. Although the related Repressor of Silencing 1 (ROS1) enzyme has been characterized, the molecular basis for 5mC recognition by DME has not been investigated. Here, we present a structure-function analysis of DME and the related DME-like 3 (DML3) glycosylases for 5mC and its oxidized derivatives. Relative to 5mC, DME and DML3 exhibited robust activity toward 5-hydroxymethylcytosine, limited activity for 5-carboxylcytosine, and no activity for 5-formylcytosine. We used homology modeling and mutational analysis of base excision and DNA binding to identify residues important for recognition of 5mC within the context of DNA and inside the enzyme active site. Our results indicate that the 5mC binding pocket is composed of residues from discrete domains and is responsible for discrimination against 5mC derivatives, and suggest that DME, ROS1, and DML3 utilize subtly different mechanisms to probe the DNA duplex for cytosine modifications.
1 Communities
1 Members
0 Resources
10 MeSH Terms