Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 55

Publication Record

Connections

Estimating relative mitochondrial DNA copy number using high throughput sequencing data.
Zhang P, Lehmann BD, Samuels DC, Zhao S, Zhao YY, Shyr Y, Guo Y
(2017) Genomics 109: 457-462
MeSH Terms: Breast Neoplasms, Cell Line, Tumor, Computational Biology, DNA Copy Number Variations, DNA, Mitochondrial, Data Mining, Databases, Genetic, Female, Genes, Essential, High-Throughput Nucleotide Sequencing, Humans, Mitochondria, Real-Time Polymerase Chain Reaction, Sequence Analysis, DNA, Sequence Analysis, RNA, Whole Exome Sequencing
Show Abstract · Added March 21, 2018
We hypothesize that the relative mitochondria copy number (MTCN) can be estimated by comparing the abundance of mitochondrial DNA to nuclear DNA reads using high throughput sequencing data. To test this hypothesis, we examined relative MTCN across 13 breast cancer cell lines using the RT-PCR based NovaQUANT Human Mitochondrial to Nuclear DNA Ratio Kit as the gold standard. Six distinct computational approaches were used to estimate the relative MTCN in order to compare to the RT-PCR measurements. The results demonstrate that relative MTCN correlates well with the RT-PCR measurements using exome sequencing data, but not RNA-seq data. Through analysis of copy number variants (CNVs) in The Cancer Genome Atlas, we show that the two nuclear genes used in the NovaQUANT assay to represent the nuclear genome often experience CNVs in tumor cells, questioning the accuracy of this gold-standard method when it is applied to tumor cells.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
A common deletion in the haptoglobin gene associated with blood cholesterol levels among Chinese women.
Zheng NS, Bastarache LA, Bastarache JA, Lu Y, Ware LB, Shu XO, Denny JC, Long J
(2017) J Hum Genet 62: 911-914
MeSH Terms: Adult, Aged, Alleles, Asian Continental Ancestry Group, Case-Control Studies, Cholesterol, DNA Copy Number Variations, Female, Gene Frequency, Genetic Association Studies, Genotype, Haptoglobins, Humans, Middle Aged, Population Surveillance, Sequence Deletion, Young Adult
Show Abstract · Added March 14, 2018
Haptoglobin (HP) protein plays a critical role in binding and removing free hemoglobin from blood. A deletion in the HP gene affects the protein structure and function. A recent study developed a novel method to impute this variant and discovered significant association of this variant with low-density lipoprotein (LDL) and total cholesterol levels among European descendants. In the present study, we investigated this variant among 3608 Chinese women. Consistent with findings from Europeans, we found significant associations between the deletion with lower cholesterol levels; women homozygous for the deletion allele (HP1-HP1), had a lower level of total cholesterol (-4.24 mg dl, P=0.02) and LDL cholesterol (-3.43 mg dl, P=0.03) than those not carrying the deletion allele (HP2-HP2). Especially, women carrying the HP1S-HP1S, had an even lower level of total cholesterol (-5.59 mg dl, P=7.0 × 10) and LDL cholesterol (-4.68 mg dl, P=8.0 × 10) compared to those carrying HP2-HP2. These associations remained significant after an adjustment for an established cholesterol level-related variant, rs2000999. Our study extends the previous findings regarding the association of HP structure variant with blood cholesterol levels to East Asians and affirms the validity of the new methodology for assessing HP structure variation.
0 Communities
3 Members
0 Resources
17 MeSH Terms
Extensive Copy Number Variation in Fermentation-Related Genes Among Wine Strains.
Steenwyk J, Rokas A
(2017) G3 (Bethesda) 7: 1475-1485
MeSH Terms: DNA Copy Number Variations, Fermentation, Genes, Fungal, Saccharomyces cerevisiae, Wine
Show Abstract · Added April 6, 2017
Due to the importance of in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance (), flocculation (), and glucose metabolism (), as well as the gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation.
Copyright © 2017 Steenwyk and Rokas.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Integrated molecular analysis reveals complex interactions between genomic and epigenomic alterations in esophageal adenocarcinomas.
Peng D, Guo Y, Chen H, Zhao S, Washington K, Hu T, Shyr Y, El-Rifai W
(2017) Sci Rep 7: 40729
MeSH Terms: Adenocarcinoma, Cell Line, Tumor, Comparative Genomic Hybridization, Computational Biology, DNA Copy Number Variations, DNA Methylation, Epigenesis, Genetic, Epigenomics, Esophageal Neoplasms, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Gene Ontology, Gene Regulatory Networks, Genomics, Humans
Show Abstract · Added April 18, 2017
The incidence of esophageal adenocarcinoma (EAC) is rapidly rising in the United States and Western countries. In this study, we carried out an integrative molecular analysis to identify interactions between genomic and epigenomic alterations in regulating gene expression networks in EAC. We detected significant alterations in DNA copy numbers (CN), gene expression levels, and DNA methylation profiles. The integrative analysis demonstrated that altered expression of 1,755 genes was associated with changes in CN or methylation. We found that expression alterations in 84 genes were associated with changes in both CN and methylation. These data suggest a strong interaction between genetic and epigenetic events to modulate gene expression in EAC. Of note, bioinformatics analysis detected a prominent K-RAS signature and predicted activation of several important transcription factor networks, including β-catenin, MYB, TWIST1, SOX7, GATA3 and GATA6. Notably, we detected hypomethylation and overexpression of several pro-inflammatory genes such as COX2, IL8 and IL23R, suggesting an important role of epigenetic regulation of these genes in the inflammatory cascade associated with EAC. In summary, this integrative analysis demonstrates a complex interaction between genetic and epigenetic mechanisms providing several novel insights for our understanding of molecular events in EAC.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.
McFadden DG, Politi K, Bhutkar A, Chen FK, Song X, Pirun M, Santiago PM, Kim-Kiselak C, Platt JT, Lee E, Hodges E, Rosebrock AP, Bronson RT, Socci ND, Hannon GJ, Jacks T, Varmus H
(2016) Proc Natl Acad Sci U S A 113: E6409-E6417
MeSH Terms: Adenocarcinoma, Adenocarcinoma of Lung, Animals, Carcinogens, Cell Transformation, Neoplastic, DNA Copy Number Variations, DNA Mutational Analysis, Disease Models, Animal, ErbB Receptors, Gene Dosage, Genes, myc, Genes, ras, Genome-Wide Association Study, Lung Neoplasms, Mice, Mice, Transgenic, Mutation, Point Mutation, ROC Curve, Whole Exome Sequencing
Show Abstract · Added April 26, 2017
Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Competing for Iron: Duplication and Amplification of the isd Locus in Staphylococcus lugdunensis HKU09-01 Provides a Competitive Advantage to Overcome Nutritional Limitation.
Heilbronner S, Monk IR, Brozyna JR, Heinrichs DE, Skaar EP, Peschel A, Foster TJ
(2016) PLoS Genet 12: e1006246
MeSH Terms: DNA Copy Number Variations, Endocarditis, Bacterial, Gene Duplication, Genetic Loci, Heme, Hemoglobins, Humans, Iron, Iron-Regulatory Proteins, Staphylococcal Infections, Staphylococcus lugdunensis, Surface Properties
Show Abstract · Added April 8, 2017
Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by "nutritional immunity" to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking "nutritional immunity".
0 Communities
1 Members
0 Resources
12 MeSH Terms
Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.
Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, Imielinski M, Hu X, Ling S, Akbani R, Rosenberg M, Cibulskis C, Ramachandran A, Collisson EA, Kwiatkowski DJ, Lawrence MS, Weinstein JN, Verhaak RG, Wu CJ, Hammerman PS, Cherniack AD, Getz G, Cancer Genome Atlas Research Network, Artyomov MN, Schreiber R, Govindan R, Meyerson M
(2016) Nat Genet 48: 607-16
MeSH Terms: Adenocarcinoma, Antigens, Neoplasm, Carcinoma, Squamous Cell, DNA Copy Number Variations, Genome, Human, Humans, Lung Neoplasms, Recurrence
Show Abstract · Added August 8, 2016
To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor-normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase-Ras-Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis.
Qin HD, Liao XY, Chen YB, Huang SY, Xue WQ, Li FF, Ge XS, Liu DQ, Cai Q, Long J, Li XZ, Hu YZ, Zhang SD, Zhang LJ, Lehrman B, Scott AF, Lin D, Zeng YX, Shugart YY, Jia WH
(2016) Am J Hum Genet 98: 709-27
MeSH Terms: Adult, Aged, Aged, 80 and over, Animals, Carcinogenesis, Carcinoma, Squamous Cell, Carrier Proteins, Cell Cycle Proteins, Cell Line, Tumor, Cell Proliferation, DNA Copy Number Variations, Esophageal Neoplasms, Esophageal Squamous Cell Carcinoma, Exome, Fas-Associated Death Domain Protein, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Genetic Association Studies, Humans, Male, Membrane Proteins, Mice, Mice, Inbred BALB C, MicroRNAs, Middle Aged, Mutation, Nerve Tissue Proteins, Prognosis, Selection, Genetic, Trans-Activators, Xenograft Model Antitumor Assays
Show Abstract · Added April 3, 2018
The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets.
Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
32 MeSH Terms
Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer.
Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A, Finetti P, Charafe-Jauffret E, Chaffanet M, Castellano R, Restouin A, Marchetto S, Collette Y, Gonçalvès A, Macara I, Birnbaum D, Kodjabachian L, Johansen T, Borg JP
(2016) Nat Commun 7: 10318
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Blotting, Western, Breast Neoplasms, Carcinoma, Ductal, Breast, Carcinoma, Lobular, Cell Line, Tumor, Cell Migration Assays, Cell Movement, Cell Polarity, Cell Proliferation, DNA Copy Number Variations, Embryo, Nonmammalian, Female, Humans, Immunoprecipitation, Intracellular Signaling Peptides and Proteins, MAP Kinase Signaling System, Mass Spectrometry, Membrane Proteins, Mice, Microscopy, Electron, Middle Aged, Neoplasm Transplantation, Prognosis, Proportional Hazards Models, RNA, Messenger, Sequestosome-1 Protein, Wnt Signaling Pathway, Xenopus
Show Abstract · Added April 10, 2018
The non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway plays a crucial role in embryonic development. Recent work has linked defects of this pathway to breast cancer aggressiveness and proposed Wnt/PCP signalling as a therapeutic target. Here we show that the archetypal Wnt/PCP protein VANGL2 is overexpressed in basal breast cancers, associated with poor prognosis and implicated in tumour growth. We identify the scaffold p62/SQSTM1 protein as a novel VANGL2-binding partner and show its key role in an evolutionarily conserved VANGL2-p62/SQSTM1-JNK pathway. This proliferative signalling cascade is upregulated in breast cancer patients with shorter survival and can be inactivated in patient-derived xenograft cells by inhibition of the JNK pathway or by disruption of the VANGL2-p62/SQSTM1 interaction. VANGL2-JNK signalling is thus a potential target for breast cancer therapy.
0 Communities
1 Members
0 Resources
MeSH Terms
Joint detection of copy number variations in parent-offspring trios.
Liu Y, Liu J, Lu J, Peng J, Juan L, Zhu X, Li B, Wang Y
(2016) Bioinformatics 32: 1130-7
MeSH Terms: Algorithms, DNA Copy Number Variations, Genome, Humans, Parents, Software
Show Abstract · Added February 15, 2016
MOTIVATION - Whole genome sequencing (WGS) of parent-offspring trios is a powerful approach for identifying disease-associated genes via detecting copy number variations (CNVs). Existing approaches, which detect CNVs for each individual in a trio independently, usually yield low-detection accuracy. Joint modeling approaches leveraging Mendelian transmission within the parent-offspring trio can be an efficient strategy to improve CNV detection accuracy.
RESULTS - In this study, we developed TrioCNV, a novel approach for jointly detecting CNVs in parent-offspring trios from WGS data. Using negative binomial regression, we modeled the read depth signal while considering both GC content bias and mappability bias. Moreover, we incorporated the family relationship and used a hidden Markov model to jointly infer CNVs for three samples of a parent-offspring trio. Through application to both simulated data and a trio from 1000 Genomes Project, we showed that TrioCNV achieved superior performance than existing approaches.
AVAILABILITY AND IMPLEMENTATION - The software TrioCNV implemented using a combination of Java and R is freely available from the website at https://github.com/yongzhuang/TrioCNV CONTACT: ydwang@hit.edu.cn
SUPPLEMENTARY INFORMATION - Supplementary data are available at Bioinformatics online.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
6 MeSH Terms