Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 3 of 3

Publication Record

Connections

Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis.
Einolf HJ, Guengerich FP
(2001) J Biol Chem 276: 3764-71
MeSH Terms: Adenosine Triphosphate, Animals, Base Sequence, Cattle, Cytidine Triphosphate, DNA Polymerase III, DNA Primers, Guanine, Humans, Kinetics, Proliferating Cell Nuclear Antigen, Recombinant Proteins
Show Abstract · Added March 5, 2014
Nucleotide insertion opposite 8-oxo-7,8-dihydroguanine (8-oxoG) by fetal calf thymus DNA polymerase delta (pol delta) was examined by steady-state and pre-steady-state rapid quench kinetic analyses. In steady-state reactions with the accessory protein proliferating cell nuclear antigen (PCNA), pol delta preferred to incorporate dCTP opposite 8-oxoG with an efficiency of incorporation an order of magnitude lower than incorporation into unmodified DNA (mainly due to an increased K(m)). Pre-steady-state kinetic analysis of incorporation opposite 8-oxoG showed biphasic kinetics for incorporation of either dCTP or dATP, with rates similar to dCTP incorporation opposite G, large phosphorothioate effects (>100), and oligonucleotide dissociation apparently rate-limiting in the steady-state. Although pol delta preferred to incorporate dCTP (14% misincorporation of dATP) the extension past the A:8-oxoG mispair predominated. The presence of PCNA was found to be a more essential factor for nucleotide incorporation opposite 8-oxoG adducts than unmodified DNA, increased pre-steady-state rates of nucleotide incorporation by >2 orders of magnitude, and was essential for nucleotide extension beyond 8-oxoG. pol delta replication fidelity at 8-oxoG depends upon contributions from K(m), K(d)(dNTP), and rates of phosphodiester bond formation, and PCNA is an important accessory protein for incorporation and extension at 8-oxoG adducts.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Eukaryotic topoisomerase II. Characterization of enzyme turnover.
Osheroff N
(1986) J Biol Chem 261: 9944-50
MeSH Terms: Adenosine Diphosphate, Adenylyl Imidodiphosphate, Animals, Cytidine Triphosphate, DNA Topoisomerases, Type II, DNA, Circular, DNA, Superhelical, Drosophila melanogaster, Electrophoresis, Agar Gel, Kinetics, Magnesium, Magnesium Chloride, Sodium Dodecyl Sulfate
Show Abstract · Added March 5, 2014
While the binding of adenyl-5'-yl imidodiphosphate (App(NH)p) to Drosophila melanogaster topoisomerase II induces a double-stranded DNA passage reaction, its nonhydrolyzable beta,gamma-imidodiphosphate bond prevents enzyme turnover (Osheroff, N., Shelton, E. R., and Brutlag, D. L. (1983) J. Biol. Chem. 258, 9536-9543). Therefore, this ATP analog was used to characterize the interactions between Drosophila topoisomerase II and DNA which occur after DNA strand passage but before enzyme turnover. In the presence of App(NH)p, a stable post-strand passage topoisomerase II-nucleic acid complex is formed when circular DNA substrates are employed. Although noncovalent in nature, these complexes are resistant to increases in ionic strength and show less than 5% dissociation under salt concentrations (greater than 500 mM) that disrupt 95% of the enzyme-DNA interactions formed in the absence of App(NH)p or under a variety of other conditions that do not support DNA strand passage. These results strongly suggest that the process of enzyme turnover not only regenerates the active conformation of topoisomerase II but also confers upon the enzyme the ability to disengage from its nucleic acid product. Experiments with linear DNA molecules indicate that after strand passage has taken place, topoisomerase II may be able to travel along its DNA substrate by a linear diffusion process that is independent of enzyme turnover. Further studies demonstrate that the regeneration of the enzyme's catalytic center does not require enzyme turnover, since topoisomerase II can cleave double-stranded DNA substrates after strand passage has taken place. Finally, while the 2'-OH and 3'-OH of ATP are important for its interaction with Drosophila topoisomerase II, neither are required for turnover.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme.
Wente SR, Schachman HK
(1991) J Biol Chem 266: 20833-9
MeSH Terms: Adenosine Triphosphate, Allosteric Regulation, Aspartate Carbamoyltransferase, Aspartic Acid, Binding Sites, Carbamyl Phosphate, Cytidine Triphosphate, DNA Mutational Analysis, Histidine, Lysine, Phosphonoacetic Acid, Structure-Activity Relationship
Show Abstract · Added March 21, 2014
Site-directed mutagenesis was used to determine how the allosteric properties of aspartate transcarbamoylase (ATCase) are affected by amino acid replacements in the nucleotide binding region of the regulatory polypeptide chains. Amino acid substitutions were made for both Lys-60 and Lys-94 in the regulatory chain since those residues have been implicated by x-ray diffraction studies, chemical modification experiments, and site-directed mutagenesis as playing a role in binding CTP and ATP. Lys-60 was replaced by His, Arg, Gln, and Ala, and Lys-94 was changed to His. These mutant forms of ATCase exhibit bewildering changes in the allosteric properties compared to the wild-type enzyme as well as altered affinities for the nucleotide effectors. The enzyme containing His-60 lacks both homotropic and heterotropic effects and exhibits no detectable binding of nucleotides. In contrast, the holoenzymes containing either Gln-60 or Arg-60 retain both homotropic and heterotropic effects. Replacement of Lys-60 by Ala yields a derivative exhibiting altered heterotropic effects involving insensitivity to CTP and activation by ATP. The mutant enzyme containing His-94 in place of Lys exhibits cooperativity with reduced affinity for nucleotides. The multiple substitutions at Lys-60 in the nucleotide binding region of the regulatory chains of ATCase demonstrate that different amino acids in the same location can alter indirectly the delicate balance of interactions responsible for the allosteric properties of ATCase. The studies show that it is hazardous and frequently unwarranted from single amino acid replacements of a specific residue to attribute to that residue the properties observed for the wild-type enzyme.
0 Communities
1 Members
0 Resources
12 MeSH Terms