Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 32

Publication Record


Gastroesophageal Reflux Induces Protein Adducts in the Esophagus.
Caspa Gokulan R, Adcock JM, Zagol-Ikapitte I, Mernaugh R, Williams P, Washington KM, Boutaud O, Oates JA, Dikalov SI, Zaika AI
(2019) Cell Mol Gastroenterol Hepatol 7: 480-482.e7
MeSH Terms: Acetylcysteine, Animals, Benzylamines, Bile Acids and Salts, Cell Line, Cyclic N-Oxides, Esophagus, Gastroesophageal Reflux, Humans, Lipids, Mice, Spin Labels, Tumor Suppressor Protein p53
Added March 26, 2019
0 Communities
1 Members
0 Resources
13 MeSH Terms
Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides.
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA
(2018) Free Radic Res 52: 339-350
MeSH Terms: Antioxidants, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Mitochondria, Nitrogen Oxides
Show Abstract · Added March 26, 2019
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
0 Communities
1 Members
0 Resources
MeSH Terms
Antihypertensive effect of mitochondria-targeted proxyl nitroxides.
Dikalova AE, Kirilyuk IA, Dikalov SI
(2015) Redox Biol 4: 355-62
MeSH Terms: Angiotensin II, Animals, Antihypertensive Agents, Antioxidants, Aorta, Blood Pressure, Cell Line, Cyclic N-Oxides, Endothelial Cells, Humans, Hydrogen Peroxide, Hypertension, Infusion Pumps, Implantable, Male, Mice, Mice, Inbred C57BL, Mitochondria, Molecular Targeted Therapy, Organophosphorus Compounds, Piperidines, Superoxides
Show Abstract · Added February 17, 2016
Superoxide ( [Formula: see text] ) has been implicated in the pathogenesis of many human diseases including hypertension. Mitochondria-targeted superoxide scavenger mitoTEMPO reduces blood pressure; however, the structure-functional relationships in antihypertensive effect of mitochondria-targeted nitroxides remain unclear. The nitroxides are known to undergo bioreduction into hydroxylamine derivatives which reacts with [Formula: see text] with much lower rate. The nitroxides of pyrrolidine series (proxyls) are much more resistant to bioreduction compared to TEMPOL derivatives suggesting that mitochondria-targeted proxyls can be effective antioxidants with antihypertensive activity. In this work we have designed and studied two new pyrrolidine mitochondria targeted nitroxides: 3-[2-(triphenyphosphonio)acetamido]- and 3-[2-(triphenyphosphonio) acetamidomethyl]-2,2,5,5-tetramethylpyrrolidine-1-oxyl (mCP2) and (mCP1). These new mitochondria targeted nitroxides have 3- to 7-fold lower rate constants of the reaction with O2(-•) compared with mitoTEMPO; however, the cellular bioreduction of mCP1 and mCP2 was 3- and 2-fold slower. As a consequence incubation with cells afforded much higher intracellular concentration of mCP1 and mCP2 nitroxides compared to mitoTEMPO nitroxide. This has compensated for the difference in the rate of O2(-•) scavenging and all nitroxides similarly protected mitochondrial respiration in H2O2 treated endothelial cells. Treatment of hypertensive mice with mCP1 and mCP2 (1.4mg/kg/day) after onset of angiotensin II-induced hypertension significantly reduced blood pressure to 133±5mmHg and 129±6mmHg compared to 163±5mmHg in mice infused with angiotensin II alone. mCP1 and mCP2 reduced vascular O2(-•) and prevented decrease of endothelial nitric oxide production. These data indicate that resistance to bioreduction play significant role in antioxidant activity of nitroxides. Studies of nitroxide analogs such as mCP1 and mCP2 may help in optimization of chemical structure of mitochondria-targeted nitroxides for improved efficacy and pharmacokinetics of these drugs in treatment of hypertension and many other conditions including atherosclerosis, diabetes and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role.
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Ascorbate reverses high glucose- and RAGE-induced leak of the endothelial permeability barrier.
Meredith ME, Qu ZC, May JM
(2014) Biochem Biophys Res Commun 445: 30-5
MeSH Terms: Acetylcysteine, Animals, Antioxidants, Ascorbic Acid, Benzamides, Cell Line, Cell Membrane Permeability, Cells, Cultured, Chromans, Cyclic N-Oxides, Dithiothreitol, Dose-Response Relationship, Drug, Endothelial Cells, Glucose, Glycation End Products, Advanced, HMGB1 Protein, Human Umbilical Vein Endothelial Cells, Humans, Mice, Receptor for Advanced Glycation End Products, Receptors, Immunologic, Serum Albumin, Bovine, Spin Labels
Show Abstract · Added May 27, 2014
High glucose concentrations due to diabetes increase leakage of plasma constituents across the endothelial permeability barrier. We sought to determine whether vitamin C, or ascorbic acid (ascorbate), could reverse such high glucose-induced increases in endothelial barrier permeability. Human umbilical vein endothelial cells and two brain endothelial cell lines cultured at 25 mM glucose showed increases in endothelial barrier permeability to radiolabeled inulin compared to cells cultured at 5mM glucose. Acute loading of the cells for 30-60 min with ascorbate before the permeability assay prevented the high glucose-induced increase in permeability and decreased basal permeability at 5mM glucose. High glucose-induced barrier leakage was mediated largely by activation of the receptor for advanced glycation end products (RAGE), since it was prevented by RAGE blockade and mimicked by RAGE ligands. Intracellular ascorbate completely prevented RAGE ligand-induced increases in barrier permeability. The high glucose-induced increase in endothelial barrier permeability was also acutely decreased by several cell-penetrant antioxidants, suggesting that at least part of the ascorbate effect could be due to its ability to act as an antioxidant.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension.
Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG, Dikalova AE
(2014) Antioxid Redox Signal 20: 281-94
MeSH Terms: Angiotensin II, Animals, Cyclic N-Oxides, Cytoplasm, Disease Models, Animal, Electron Transport, Endothelial Cells, Gene Silencing, Humans, Hydrogen Peroxide, Hypertension, Malates, Membrane Glycoproteins, Mice, Mice, Knockout, Mitochondria, Heart, NADPH Oxidase 2, NADPH Oxidases, Oxidative Stress, Protein Isoforms, Protein Transport, RNA Interference, Reactive Oxygen Species, Superoxides, src-Family Kinases
Show Abstract · Added March 30, 2014
AIMS - Angiotensin II (AngII)-induced superoxide (O2(•-)) production by the NADPH oxidases and mitochondria has been implicated in the pathogenesis of endothelial dysfunction and hypertension. In this work, we investigated the specific molecular mechanisms responsible for the stimulation of mitochondrial O2(•-) and its downstream targets using cultured human aortic endothelial cells and a mouse model of AngII-induced hypertension.
RESULTS - Western blot analysis showed that Nox2 and Nox4 were present in the cytoplasm but not in the mitochondria. Depletion of Nox2, but not Nox1, Nox4, or Nox5, using siRNA inhibits AngII-induced O2(•-) production in both mitochondria and cytoplasm. Nox2 depletion in gp91phox knockout mice inhibited AngII-induced cellular and mitochondrial O2(•-) and attenuated hypertension. Inhibition of mitochondrial reverse electron transfer with malonate, malate, or rotenone attenuated AngII-induced cytoplasmic and mitochondrial O2(•-) production. Inhibition of the mitochondrial ATP-sensitive potassium channel (mitoK(+)ATP) with 5-hydroxydecanoic acid or specific PKCɛ peptide antagonist (EAVSLKPT) reduced AngII-induced H2O2 in isolated mitochondria and diminished cytoplasmic O2(•-). The mitoK(+)ATP agonist diazoxide increased mitochondrial O2(•-), cytoplasmic c-Src phosphorylation and cytoplasmic O2(•-) suggesting feed-forward regulation of cellular O2(•-) by mitochondrial reactive oxygen species (ROS). Treatment of AngII-infused mice with malate reduced blood pressure and enhanced the antihypertensive effect of mitoTEMPO. Mitochondria-targeted H2O2 scavenger mitoEbselen attenuated redox-dependent c-Src and inhibited AngII-induced cellular O2(•-), diminished aortic H2O2, and reduced blood pressure in hypertensive mice.
INNOVATION AND CONCLUSIONS - These studies show that Nox2 stimulates mitochondrial ROS by activating reverse electron transfer and both mitochondrial O2(•-) and reverse electron transfer may represent new pharmacological targets for the treatment of hypertension.
1 Communities
4 Members
0 Resources
25 MeSH Terms
DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles.
Sahu ID, McCarrick RM, Troxel KR, Zhang R, Smith HJ, Dunagan MM, Swartz MS, Rajan PV, Kroncke BM, Sanders CR, Lorigan GA
(2013) Biochemistry 52: 6627-32
MeSH Terms: Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Lipid Bilayers, Membrane Proteins, Mesylates, Nanoparticles, Potassium Channels, Voltage-Gated, Spin Labels
Show Abstract · Added November 21, 2018
Pulsed EPR DEER structural studies of membrane proteins in a lipid bilayer have often been hindered by difficulties in extracting accurate distances when compared to those of globular proteins. In this study, we employed a combination of three recently developed methodologies, (1) bifunctional spin labels (BSL), (2) SMA-Lipodisq nanoparticles, and (3) Q band pulsed EPR measurements, to obtain improved signal sensitivity, increased transverse relaxation time, and more accurate and precise distances in DEER measurements on the integral membrane protein KCNE1. The KCNE1 EPR data indicated an ∼2-fold increase in the transverse relaxation time for the SMA-Lipodisq nanoparticles when compared to those of proteoliposomes and narrower distance distributions for the BSL when compared to those of the standard MTSL. The certainty of information content in DEER data obtained for KCNE1 in SMA-Lipodisq nanoparticles is comparable to that in micelles. The combination of techniques will enable researchers to potentially obtain more precise distances in cases where the traditional spin labels and membrane systems yield imprecise distance distributions.
0 Communities
1 Members
0 Resources
MeSH Terms
Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme.
Islam SM, Stein RA, McHaourab HS, Roux B
(2013) J Phys Chem B 117: 4740-54
MeSH Terms: Bacteriophage T4, Crystallography, X-Ray, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Electrons, Mesylates, Molecular Dynamics Simulation, Muramidase, Protein Structure, Tertiary, Spin Labels
Show Abstract · Added February 19, 2015
DEER (double electron-electron resonance) is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of distance histograms between pairs of nitroxide spin-labels linked to a protein in a native-like solution environment. However, exploiting the huge amount of information provided by ESR/DEER histograms to refine structural models is extremely challenging. In this study, a restrained ensemble (RE) molecular dynamics (MD) simulation methodology is developed to address this issue. In RE simulation, the spin-spin distance distribution histograms calculated from a multiple-copy MD simulation are enforced, via a global ensemble-based energy restraint, to match those obtained from ESR/DEER experiments. The RE simulation is applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in T4 lysozyme (T4L). The rotamer population distribution along the five dihedral angles connecting the nitroxide ring to the protein backbone is determined and shown to be consistent with available information from X-ray crystallography. For the purpose of structural refinement, the concept of a simplified nitroxide dummy spin-label is designed and parametrized on the basis of these all-atom RE simulations with explicit solvent. It is demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures, while simple harmonic distance restraints are unsuccessful. This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism.
Buehler PW, Baek JH, Lisk C, Connor I, Sullivan T, Kominsky D, Majka S, Stenmark KR, Nozik-Grayck E, Bonaventura J, Irwin DC
(2012) Am J Physiol Lung Cell Mol Physiol 303: L312-26
MeSH Terms: Animals, Blood Pressure, Blotting, Western, Cardiac Output, Cyclic N-Oxides, Hemodynamics, Hemoglobins, Humans, Hydrogen Peroxide, Inflammation, Infusion Pumps, Intercellular Adhesion Molecule-1, Kidney, Lipid Peroxidation, Lung, Lung Diseases, Male, Nitric Oxide, Oxidative Stress, Pulmonary Artery, Rats, Rats, Sprague-Dawley, Spin Labels, Vascular Diseases
Show Abstract · Added August 4, 2015
Cell-free hemoglobin (Hb) exposure may be a pathogenic mediator in the development of pulmonary arterial hypertension (PAH), and when combined with chronic hypoxia the potential for exacerbation of PAH and vascular remodeling is likely more pronounced. We hypothesized that Hb may contribute to hypoxia-driven PAH collectively as a prooxidant, inflammatory, and nitric oxide (NO) scavenger. Using programmable micropump technology, we exposed male Sprague-Dawley rats housed under room air or hypoxia to 12 or 30 mg per day Hb for 3, 5, and 7 wk. Blood pressure, cardiac output, right ventricular hypertrophy, and indexes of pulmonary vascular remodeling were evaluated. Additionally, markers of oxidative stress, NO bioavailability and inflammation were determined. Hb increased pulmonary arterial (PA) pressure, pulmonary vessel wall stiffening, and right heart hypertrophy with temporal and dose dependence in both room air and hypoxic cohorts. Hb induced a modest increase in plasma oxidative stress markers (malondialdehyde and 4-hydroxynonenal), no change in NO bioavailability, and increased lung ICAM protein expression. Treatment with the antioxidant Tempol attenuated Hb-induced pulmonary arterial wall thickening, but not PA pressures or ICAM expression. Chronic exposure to low plasma Hb concentrations (range = 3-10 μM) lasting up to 7 wk in rodents induces pulmonary vascular disease via inflammation and to a lesser extent by Hb-mediated oxidation. Tempol demonstrated a modest effect on the attenuation of Hb-induced pulmonary vascular disease. NO bioavailability was found to be of minimal importance in this model.
1 Communities
1 Members
0 Resources
24 MeSH Terms
Distance measurements on a dual-labeled TOAC AChR M2δ peptide in mechanically aligned DMPC bilayers via dipolar broadening CW-EPR spectroscopy.
Ghimire H, Hustedt EJ, Sahu ID, Inbaraj JJ, McCarrick R, Mayo DJ, Benedikt MR, Lee RT, Grosser SM, Lorigan GA
(2012) J Phys Chem B 116: 3866-73
MeSH Terms: Amino Acid Sequence, Cyclic N-Oxides, Dimyristoylphosphatidylcholine, Electron Spin Resonance Spectroscopy, Lipid Bilayers, Models, Chemical, Molecular Sequence Data, Peptides, Receptors, Nicotinic
Show Abstract · Added February 20, 2013
A membrane alignment technique has been used to measure the distance between two TOAC nitroxide spin labels on the membrane-spanning M2δ, peptide of the nicotinic acetylcholine receptor (AChR), via CW-EPR spectroscopy. The TOAC-labeled M2δ peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 14.6 Å from a dual TOAC-labeled AChR M2δ peptide at positions 7 and 13 that closely matches with the 14.5 Å distance obtained from a model of the labeled AChR M2δ peptide. In addition, the angles determining the relative orientation of the two nitroxides have been determined, and the results compare favorably with molecular modeling. The global analysis of the data from the aligned samples gives much more precise estimates of the parameters defining the geometry of the two labels than can be obtained from a randomly dispersed sample.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Folate receptor-targeted antioxidant therapy ameliorates renal ischemia-reperfusion injury.
Knight SF, Kundu K, Joseph G, Dikalov S, Weiss D, Murthy N, Taylor WR
(2012) J Am Soc Nephrol 23: 793-800
MeSH Terms: Animals, Antioxidants, Apoptosis, Cells, Cultured, Cyclic N-Oxides, Folic Acid Transporters, Humans, Kidney, Kidney Tubules, Proximal, Male, Mice, Mice, Inbred C57BL, Reperfusion Injury, Spin Labels, Superoxides
Show Abstract · Added February 17, 2016
Antioxidant therapy can protect against ischemic injury, but the inability to selectively target the kidney would require extremely high doses to achieve effective local concentrations of drug. Here, we developed a directed therapeutic that specifically targets an antioxidant to renal proximal tubule cells via the folate receptor. Because a local increase in superoxide contributes to renal ischemic injury, we created the folate-antioxidant conjugate 4-hydroxy-Tempo (tempol)-folate to target folate receptors, which are highly expressed in the proximal tubule. Dihydroethidium high-performance liquid chromatography demonstrated that conjugated tempol retained its efficacy to scavenge superoxide in proximal tubule cells. In a mouse model of renal ischemia-reperfusion injury, tempol-folate reduced renal superoxide levels more effectively than tempol alone. Furthermore, electron spin resonance revealed the successful targeting of the tempol-folate conjugate to the kidney and other tissues expressing folate receptors. Administration of tempol-folate protected the renal function of mice after ischemia-reperfusion injury and inhibited infiltration of macrophages. In conclusion, kidney-specific targeting of an antioxidant has therapeutic potential to prevent renal ischemic injury. Conjugation of other pharmaceuticals to folate may also facilitate the development of treatments for other kidney diseases.
0 Communities
1 Members
0 Resources
15 MeSH Terms