Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 2928

Publication Record

Connections

Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity.
Miller JM, Meki MH, Ou Q, George SA, Gams A, Abouleisa RRE, Tang XL, Ahern BM, Giridharan GA, El-Baz A, Hill BG, Satin J, Conklin DJ, Moslehi J, Bolli R, Ribeiro AJS, Efimov IR, Mohamed TMA
(2020) Toxicol Appl Pharmacol 406: 115213
MeSH Terms: Adult, Aged, Animals, Antineoplastic Agents, Apoptosis, Cardiotoxicity, Cardiotoxins, Doxorubicin, Female, Heart, Humans, Induced Pluripotent Stem Cells, Male, Middle Aged, Models, Biological, Swine, Tissue Culture Techniques, Trastuzumab
Show Abstract · Added September 29, 2020
The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 μm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 μM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.
Copyright © 2020 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells.
Leelatian N, Sinnaeve J, Mistry AM, Barone SM, Brockman AA, Diggins KE, Greenplate AR, Weaver KD, Thompson RC, Chambless LB, Mobley BC, Ihrie RA, Irish JM
(2020) Elife 9:
MeSH Terms: Algorithms, Glioblastoma, Humans, Pilot Projects, Tumor Cells, Cultured, Unsupervised Machine Learning
Show Abstract · Added July 1, 2020
A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.
© 2020, Leelatian et al.
3 Communities
1 Members
0 Resources
6 MeSH Terms
Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic β-Cells.
Osipovich AB, Stancill JS, Cartailler JP, Dudek KD, Magnuson MA
(2020) Diabetes 69: 1476-1491
MeSH Terms: Animals, Calcium, Cells, Cultured, Diet, High-Fat, Female, Gene Expression Regulation, Glucose, Insulin-Secreting Cells, Male, Mice, Mice, Inbred C57BL, Mitochondria, Overnutrition, Sex Characteristics, Transcriptome
Show Abstract · Added April 28, 2020
A sustained increase in intracellular Ca concentration (referred to hereafter as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high-fat diet (HFD) on knockout mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca channel blocker. Excitotoxicity, overnutrition, and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation, and mitochondrial biogenesis and their key regulator Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure.
© 2020 by the American Diabetes Association.
2 Communities
3 Members
0 Resources
15 MeSH Terms
Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction.
Lim SP, Costantini B, Mian SA, Perez Abellan P, Gandhi S, Martinez Llordella M, Lozano JJ, Antunes Dos Reis R, Povoleri GAM, Mourikis TP, Abarrategi A, Ariza-McNaughton L, Heck S, Irish JM, Lombardi G, Marsh JCW, Bonnet D, Kordasti S, Mufti GJ
(2020) Blood 136: 885-897
MeSH Terms: Anemia, Aplastic, Animals, Apoptosis, Cells, Cultured, Fas Ligand Protein, Female, Humans, Immune System Diseases, Immune Tolerance, Interleukin-2, Male, Mice, Mice, Inbred NOD, Mice, SCID, Mice, Transgenic, T-Lymphocytes, Regulatory
Show Abstract · Added June 8, 2020
Idiopathic aplastic anemia (AA) has 2 key characteristics: an autoimmune response against hematopoietic stem/progenitor cells and regulatory T-cells (Tregs) deficiency. We have previously demonstrated reduction in a specific subpopulation of Treg in AA, which predicts response to immunosuppression. The aims of the present study were to define mechanisms of Treg subpopulation imbalance and identify potential for therapeutic intervention. We have identified 2 mechanisms that lead to skewed Treg composition in AA: first, FasL-mediated apoptosis on ligand interaction; and, second, relative interleukin-2 (IL-2) deprivation. We have shown that IL-2 augmentation can overcome these mechanisms. Interestingly, when high concentrations of IL-2 were used for in vitro Treg expansion cultures, AA Tregs were able to expand. The expanded populations expressed a high level of p-BCL-2, which makes them resistant to apoptosis. Using a xenograft mouse model, the function and stability of expanded AA Tregs were tested. We have shown that these Tregs were able to suppress the macroscopic clinical features and tissue manifestations of T-cell-mediated graft-versus-host disease. These Tregs maintained their suppressive properties as well as their phenotype in a highly inflammatory environment. Our findings provide an insight into the mechanisms of Treg reduction in AA. We have identified novel targets with potential for therapeutic interventions. Supplementation of ex vivo expansion cultures of Tregs with high concentrations of IL-2 or delivery of IL-2 directly to patients could improve clinical outcomes in addition to standard immunosuppressive therapy.
© 2020 by The American Society of Hematology.
1 Communities
1 Members
0 Resources
16 MeSH Terms
Ins1-Cre and Ins1-CreER Gene Replacement Alleles Are Susceptible To Silencing By DNA Hypermethylation.
Mosleh E, Ou K, Haemmerle MW, Tembo T, Yuhas A, Carboneau BA, Townsend SE, Bosma KJ, Gannon M, O'Brien RM, Stoffers DA, Golson ML
(2020) Endocrinology 161:
MeSH Terms: Alleles, Animals, Cells, Cultured, DNA Methylation, Female, Gene Silencing, HEK293 Cells, Humans, Insulin, Insulin-Secreting Cells, Integrases, Islets of Langerhans, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Organ Specificity, Recombination, Genetic
Show Abstract · Added May 12, 2020
Targeted gene ablation studies of the endocrine pancreas have long suffered from suboptimal Cre deleter strains. In many cases, Cre lines purportedly specific for beta cells also displayed expression in other islet endocrine cells or in a subset of neurons in the brain. Several pancreas and endocrine Cre lines have experienced silencing or mosaicism over time. In addition, many Cre transgenic constructs were designed to include the hGH mini-gene, which by itself increases beta-cell replication and decreases beta-cell function. More recently, driver lines with Cre or CreER inserted into the Ins1 locus were generated, with the intent of producing β cell-specific Cre lines with faithful recapitulation of insulin expression. These lines were bred in multiple labs to several different mouse lines harboring various lox alleles. In our hands, the ability of the Ins1-Cre and Ins1-CreER lines to delete target genes varied from that originally reported, with both alleles displaying low levels of expression, increased levels of methylation compared to the wild-type allele, and ultimately inefficient or absent target deletion. Thus, caution is warranted in the interpretation of results obtained with these genetic tools, and Cre expression and activity should be monitored regularly when using these lines.
© Endocrine Society 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1 Communities
0 Members
0 Resources
18 MeSH Terms
Long non-coding RNA enhances chondrogenesis via suppression of the interferon type II signaling pathway.
Huynh NP, Gloss CC, Lorentz J, Tang R, Brunger JM, McAlinden A, Zhang B, Guilak F
(2020) Elife 9:
MeSH Terms: Binding Sites, Cell Differentiation, Cells, Cultured, Chondrocytes, Chondrogenesis, Extracellular Matrix, Gene Editing, Gene Expression Profiling, Gene Expression Regulation, Developmental, Gene Regulatory Networks, Humans, Immunohistochemistry, Interferon-gamma, Mesenchymal Stem Cells, Protein Binding, RNA, Long Noncoding, Signal Transduction
Show Abstract · Added March 16, 2021
The roles of long noncoding RNAs (lncRNAs) in musculoskeletal development, disease, and regeneration remain poorly understood. Here, we identified the novel lncRNA (originally named ) as a regulator of mesenchymal stem cell (MSC) chondrogenesis. , a primate-specific lncRNA, is upregulated during MSC chondrogenesis and appears to act directly downstream of SOX9, but not TGF-β3. We showed that the silencing of resulted in lower accumulation of cartilage-like extracellular matrix in a pellet assay, while overexpression - either via transgene ectopic expression or by endogenous activation via CRISPR-dCas9-VP64 - significantly enhanced cartilage matrix production. acts to inhibit IFN-γ by binding to EIF2AK2, and we further demonstrated that exhibits a protective effect in engineered cartilage against interferon type II. Our results indicate an important role of in regulating stem cell chondrogenesis, as well as its therapeutic potential in the treatment of cartilage-related diseases, such as osteoarthritis.
© 2020, Huynh et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease.
Mileto SJ, Jardé T, Childress KO, Jensen JL, Rogers AP, Kerr G, Hutton ML, Sheedlo MJ, Bloch SC, Shupe JA, Horvay K, Flores T, Engel R, Wilkins S, McMurrick PJ, Lacy DB, Abud HE, Lyras D
(2020) Proc Natl Acad Sci U S A 117: 8064-8073
MeSH Terms: Animals, Bacterial Proteins, Bacterial Toxins, Cells, Cultured, Clostridioides difficile, Clostridium Infections, Colon, Disease Models, Animal, Female, Frizzled Receptors, Humans, Intestinal Mucosa, Mice, Organoids, Primary Cell Culture, Recombinant Proteins, Stem Cells
Show Abstract · Added March 24, 2020
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, 8, e73204 (2013); S. Kozar , 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A.
Sucre JMS, Vickers KC, Benjamin JT, Plosa EJ, Jetter CS, Cutrone A, Ransom M, Anderson Z, Sheng Q, Fensterheim BA, Ambalavanan N, Millis B, Lee E, Zijlstra A, Königshoff M, Blackwell TS, Guttentag SH
(2020) Am J Respir Crit Care Med 201: 1249-1262
MeSH Terms: Alveolar Epithelial Cells, Animals, Bronchopulmonary Dysplasia, Coculture Techniques, Fibroblasts, Gene Expression Profiling, Gene Expression Regulation, Developmental, Humans, Hyperoxia, In Situ Hybridization, Lung, Mesenchymal Stem Cells, Mice, Microscopy, Confocal, NF-kappa B, Nitriles, Organ Culture Techniques, Real-Time Polymerase Chain Reaction, Sulfones, Wnt-5a Protein
Show Abstract · Added February 6, 2020
Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis. To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury. Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA hybridization, quantitative confocal microscopy, and lung morphometry. Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of . Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced expression in the PCLS hyperoxia model and mouse hyperoxia model, with improved alveolarization in the PCLS model. Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
0 Communities
3 Members
0 Resources
20 MeSH Terms
Identification and Characterization of Unique Neutralizing Antibodies to Mouse EGF Receptor.
Jae Huh W, Niitsu H, Carney B, McKinley ET, Houghton JL, Coffey RJ
(2020) Gastroenterology 158: 1500-1502
MeSH Terms: Animals, Antibodies, Monoclonal, Humanized, Antibodies, Neutralizing, Azoxymethane, Carcinogens, Cells, Cultured, Colonic Neoplasms, Dextran Sulfate, Disease Models, Animal, ErbB Receptors, Gastritis, Hypertrophic, Genes, Reporter, Hepatocytes, Humans, Mice, Mice, Transgenic, Primary Cell Culture
Added January 31, 2020
1 Communities
1 Members
0 Resources
17 MeSH Terms
Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress.
Byrd KM, Piehl NC, Patel JH, Huh WJ, Sequeira I, Lough KJ, Wagner BL, Marangoni P, Watt FM, Klein OD, Coffey RJ, Williams SE
(2019) Cell Stem Cell 25: 814-829.e6
MeSH Terms: Animals, Cell Division, Cell Lineage, Cells, Cultured, Female, Flow Cytometry, Fluorescence, Immunohistochemistry, Male, Membrane Glycoproteins, Mice, Mouth Mucosa, Nerve Tissue Proteins, Stem Cells, Wound Healing
Show Abstract · Added March 3, 2020
Stem cells in stratified epithelia are generally believed to adhere to a non-hierarchical single-progenitor model. Using lineage tracing and genetic label-retention assays, we show that the hard palatal epithelium of the oral cavity is unique in displaying marked proliferative heterogeneity. We identify a previously uncharacterized, infrequently-dividing stem cell population that resides within a candidate niche, the junctional zone (JZ). JZ stem cells tend to self-renew by planar symmetric divisions, respond to masticatory stresses, and promote wound healing, whereas frequently-dividing cells reside outside the JZ, preferentially renew through perpendicular asymmetric divisions, and are less responsive to injury. LRIG1 is enriched in the infrequently-dividing population in homeostasis, dynamically changes expression in response to tissue stresses, and promotes quiescence, whereas Igfbp5 preferentially labels a rapidly-growing, differentiation-prone population. These studies establish the oral mucosa as an important model system to study epithelial stem cell populations and how they respond to tissue stresses.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms