Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 128

Publication Record

Connections

Phenotypes of primary retinal macroglia: Implications for purification and culture conditions.
Backstrom JR, Sheng J, Fischer RA, Sappington RM, Rex TS
(2019) Exp Eye Res 182: 85-92
MeSH Terms: Animals, Astrocytes, Cell Communication, Cell Culture Techniques, Cell Differentiation, Culture Media, Neuroglia, Phenotype, Rats, Rats, Sprague-Dawley, Retina, Retinal Neurons
Show Abstract · Added April 2, 2019
Many neurodegenerations, including those of the visual system, have complex etiologies that include roles for both neurons and glia. In the retina there is evidence that retinal astrocytes play an important role in neurodegeneration. There are several approaches for isolating and growing primary retinal astrocytes, however, they often lead to different results. In this study, we examined the influence of culture conditions on phenotypic maturation of primary, purified retinal glia. We compared retinal astrocytes and Müller glia purified by immunomagnetic separation, as differentiation between these astrocyte subtypes is critical and immuno-based methods are the standard practice of purification. We found that while time in culture impacts the health and phenotype of both astrocytes and Müller glia, the phenotypic maturation of retinal astrocytes was most impacted by serum factors. These factors appeared to actively regulate intermediate filament phenotypes in a manner consistent with the induction of astrocyte-mesenchymal transition (AMT). This propensity for retinal astrocytes to shift along an AMT continuum should be considered when interpreting resulting data. Our goal is that this study will help standardize the field so that studies are replicable, comparable, and as accurate as possible for subsequent interpretation of findings.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
C Flux Analysis Reveals that Rebalancing Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon Metabolism of CHO Cell Cultures.
McAtee Pereira AG, Walther JL, Hollenbach M, Young JD
(2018) Biotechnol J 13: e1700518
MeSH Terms: Amino Acids, Ammonia, Animals, Antibodies, Monoclonal, CHO Cells, Carbon, Cricetulus, Culture Media, Glycosylation, Metabolic Flux Analysis, Recombinant Proteins
Show Abstract · Added March 14, 2018
C metabolic flux analysis (MFA) provides a rigorous approach to quantify intracellular metabolism of industrial cell lines. In this study, C MFA was used to characterize the metabolic response of Chinese hamster ovary (CHO) cells to a novel medium variant designed to reduce ammonia production. Ammonia inhibits growth and viability of CHO cell cultures, alters glycosylation of recombinant proteins, and enhances product degradation. Ammonia production was reduced by manipulating the amino acid composition of the culture medium; specifically, glutamine, glutamate, asparagine, aspartate, and serine levels were adjusted. Parallel C flux analysis experiments determined that, while ammonia production decreased by roughly 40%, CHO cell metabolic phenotype, growth, viability, and monoclonal antibody (mAb) titer were not significantly altered by the changes in media composition. This study illustrates how C flux analysis can be applied to assess the metabolic effects of media manipulations on mammalian cell cultures. The analysis revealed that adjusting the amino acid composition of CHO cell culture media can effectively reduce ammonia production while preserving fluxes throughout central carbon metabolism.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES
(2017) Fluids Barriers CNS 14: 9
MeSH Terms: Astrocytes, Blood-Brain Barrier, Cell Differentiation, Cell Line, Culture Media, Culture Techniques, Endothelial Cells, Humans, Immunohistochemistry, Induced Pluripotent Stem Cells, Male, Pericytes, Time Factors
Show Abstract · Added April 26, 2017
BACKGROUND - Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods.
METHODS - Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines.
RESULTS - The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm and fluorescein permeability below 1.95 × 10 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson's Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm, which to our knowledge is the highest reported in vitro TEER value to date.
CONCLUSIONS - Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Effective Isolation of Functional Islets from Neonatal Mouse Pancreas.
Huang C, Gu G
(2017) J Vis Exp :
MeSH Terms: Animals, Animals, Newborn, Calcium, Cell Separation, Collagenases, Culture Media, Glucose, Insulin, Insulin Secretion, Islets of Langerhans, Magnesium, Mice, Mice, Inbred CBA, Pancreas
Show Abstract · Added December 4, 2020
Perfusion-based islet-isolation protocols from large mammalian pancreata are well established. Such protocols are readily conducted in many laboratories due to the large size of the pancreatic duct that allows for ready collagenase injection and subsequent tissue perfusion. In contrast, islet isolation from small pancreata, like that of neonatal mice, is challenging because perfusion is not readily achievable in the small pancreata. Here we describe a detailed simple procedure that recovers substantial numbers of islets from newly born mice with visual assistance. Freshly dissected whole pancreata were digested with 0.5 mg/mL collagenase IV dissolved in Hanks' Balanced Salt Solution (HBSS) at 37 °C, in microcentrifuge tubes. Tubes were tapped regularly to aid tissue dispersal. When most of the tissue was dispersed to small clusters around 1 mm, lysates were washed three to four times with culture media with 10% fetal bovine serum (FBS). Islet clusters, devoid of recognizable acinar tissues, can then be recovered under dissecting stereoscope. This method recovers 20 - 80 small- to large-sized islets per pancreas of newly born mouse. These islets are suitable for most conceivable downstream assays, including insulin secretion, gene expression, and culture. An example of insulin secretion assay is presented to validate the isolation process. The genetic background and degree of digestion are the largest factors determining the yield. Freshly made collagenase solution with high activity is preferred, as it aids in endocrine-exocrine isolation. The presence of cations [calcium (Ca) and magnesium (Mg)] in all solutions and fetal bovine serum in the wash/picking media are necessary for good yield of islets with proper integrity. A dissecting scope with good contrast and magnification will also help.
1 Communities
0 Members
0 Resources
MeSH Terms
Nup100 regulates replicative life span by mediating the nuclear export of specific tRNAs.
Lord CL, Ospovat O, Wente SR
(2017) RNA 23: 365-377
MeSH Terms: Active Transport, Cell Nucleus, Basic-Leucine Zipper Transcription Factors, Blotting, Northern, Cell Division, Cell Nucleus, Culture Media, Gene Expression Regulation, Fungal, In Situ Hybridization, Fluorescence, Karyopherins, Nuclear Pore, Nuclear Pore Complex Proteins, RNA, Fungal, RNA, Transfer, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors
Show Abstract · Added April 14, 2017
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of We previously reported that deletion of the nonessential gene increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of Δ mutants. Protein levels of the transcription factor Gcn4 are increased when is deleted, and is required for the elevated life spans of Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of Δ and Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the life span.
© 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
0 Communities
1 Members
0 Resources
16 MeSH Terms
The Ste20 kinases SPAK and OSR1 travel between cells through exosomes.
Koumangoye R, Delpire E
(2016) Am J Physiol Cell Physiol 311: C43-53
MeSH Terms: Cell Communication, Cell Membrane, Coculture Techniques, Culture Media, Conditioned, Exosomes, HEK293 Cells, HeLa Cells, Humans, Luminescent Proteins, Microscopy, Fluorescence, Particle Size, Phosphorylation, Protein Transport, Protein-Serine-Threonine Kinases, Recombinant Proteins, Solute Carrier Family 12, Member 2, Tetraspanin 30, Time Factors, Transfection
Show Abstract · Added May 3, 2017
Proteomics studies have identified Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) in exosomes isolated from body fluids such as blood, saliva, and urine. Because proteomics studies likely overestimate the number of exosome proteins, we sought to confirm and extend this observation using traditional biochemical and cell biology methods. We utilized HEK293 cells in culture to verify the packaging of these Ste20 kinases in exosomes. Using a series of centrifugation and filtration steps of conditioned culture medium isolated from HEK293 cells, we isolated nanovesicles in the range of 40-100 nm. We show that these small vesicles express the tetraspanin protein CD63 and lack endoplasmic reticulum and Golgi markers, consistent with these being exosomes. We show by Western blot and immunogold analyses that these exosomes express SPAK, OSR1, and Na-K-Cl cotransporter 1 (NKCC1). We show that exosomes are not only secreted by cells, but also accumulated by adjacent cells. Indeed, exposing cultured cells to exosomes produced by other cells expressing a fluorescently labeled kinase resulted in the kinase finding its way into the cytoplasm of these cells, consistent with the idea of exosomes serving as cell-to-cell communication vessels. Similarly, coculturing cells expressing different fluorescently tagged proteins resulted in the exchange of proteins between cells. In addition, we show that both SPAK and OSR1 kinases entering cells through exosomes are preferentially expressed at the plasma membrane and that the kinases in exosomes are functional and maintain NKCC1 in a phosphorylated state.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
19 MeSH Terms
The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.
Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP
(2014) Mol Microbiol 94: 1343-60
MeSH Terms: Bacterial Proteins, Copper, Culture Media, Gene Expression Regulation, Bacterial, Hydrogen Sulfide, Operon, Repressor Proteins, Staphylococcus aureus, Sulfides, Tandem Mass Spectrometry
Show Abstract · Added January 24, 2015
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.
© 2014 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia.
Saito S, Nakazawa Y, Sueki A, Matsuda K, Tanaka M, Yanagisawa R, Maeda Y, Sato Y, Okabe S, Inukai T, Sugita K, Wilson MH, Rooney CM, Koike K
(2014) Cytotherapy 16: 1257-69
MeSH Terms: Antigens, CD19, Cancer Vaccines, Cell Line, Tumor, Cell Proliferation, Culture Media, Serum-Free, Cytotoxicity, Immunologic, DNA Transposable Elements, Drug Resistance, Neoplasm, Genetic Engineering, Genetic Vectors, Humans, Immunotherapy, Adoptive, Interleukin-15, Interleukin-2, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Mutation, Protein Kinase Inhibitors, Receptors, Antigen, T-Cell, Recombinant Fusion Proteins, T-Lymphocytes, TNF-Related Apoptosis-Inducing Ligand, Up-Regulation
Show Abstract · Added October 28, 2014
BACKGROUND AIMS - To develop a treatment option for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR).
METHODS - A CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15-containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph(+)ALL cell lines including three TKI-resistant (T315I-mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines.
RESULTS - We obtained ∼1.3 × 10(8) CAR T cells (CD4(+), 25.4%; CD8(+), 71.3%), co-expressing CD45RA and CCR7 up to ∼80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CAR T cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor-related apoptosis-inducing ligand and interleukin-2.
CONCLUSIONS - We generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph(+)ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph(+)ALL.
Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
HIF1α and HIF2α exert distinct nutrient preferences in renal cells.
Arreola A, Cowey CL, Coloff JL, Rathmell JC, Rathmell WK
(2014) PLoS One 9: e98705
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Carbon, Cell Line, Culture Media, Epithelial Cells, Food, Gene Expression, Glucose, Glutamic Acid, Hypoxia-Inducible Factor 1, alpha Subunit, Kidney, Metabolome, Mice, Oxidative Phosphorylation, Transcription Factors
Show Abstract · Added October 17, 2015
BACKGROUND - Hypoxia Inducible Factors (HIF1α and HIF2α) are commonly stabilized and play key roles related to cell growth and metabolic programming in clear cell renal cell carcinoma. The relationship of these factors to discretely alter cell metabolic activities has largely been described in cancer cells, or in hypoxic conditions, where other confounding factors undoubtedly compete. These transcription factors and their specific roles in promoting cancer metabolic phenotypes from the earliest stages are poorly understood in pre-malignant cells.
METHODS - We undertook an analysis of SV40-transformed primary kidney epithelial cells derived from newborn mice genetically engineered to express a stabilized HIF1α or HIF2α transgene. We examined the metabolic profile in relation to each gene.
RESULTS - Although the cells proliferated similarly, the metabolic profile of each genotype of cell was markedly different and correlated with altered gene expression of factors influencing components of metabolic signaling. HIF1α promoted high levels of glycolysis as well as increased oxidative phosphorylation in complete media, but oxidative phosphorylation was suppressed when supplied with single carbon source media. HIF2α, in contrast, supported oxidative phosphorylation in complete media or single glucose carbon source, but these cells were not responsive to glutamine nutrient sources. This finding correlates to HIF2α-specific induction of Glul, effectively reducing glutamine utilization by limiting the glutamate pool, and knockdown of Glul allows these cells to perform oxidative phosphorylation in glutamine media.
CONCLUSION - HIF1α and HIF2α support highly divergent patterns of kidney epithelial cell metabolic phenotype. Expression of these factors ultimately alters the nutrient resource utilization and energy generation strategy in the setting of complete or limiting nutrients.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation.
Johnson RW, White JD, Walker EC, Martin TJ, Sims NA
(2014) Bone 64: 47-56
MeSH Terms: Animals, Cell Differentiation, Cell Line, Chemokines, Ciliary Neurotrophic Factor, Culture Media, Conditioned, Cytokines, Gene Expression, Mice, Mice, Inbred C57BL, Osteoblasts, RANK Ligand, Receptor, Ciliary Neurotrophic Factor
Show Abstract · Added March 26, 2019
Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is an inhibitory myokine for osteoblasts.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms