Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 8 of 8

Publication Record

Connections

The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.
Lubinski AJ, Page TL
(2016) J Biol Rhythms 31: 161-9
MeSH Terms: Animals, Circadian Clocks, Circadian Rhythm, Cockroaches, Conditioning, Classical, Conditioning, Operant, Learning, Light, Mental Recall, Olfactory Receptor Neurons, Optic Lobe, Nonmammalian, Pyrazoles, Smell
Show Abstract · Added February 8, 2016
The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain.
© 2015 The Author(s).
0 Communities
1 Members
0 Resources
13 MeSH Terms
A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment.
Jiang H, Hanna E, Gatto CL, Page TL, Bhuva B, Broadie K
(2016) J Neurosci Methods 261: 62-74
MeSH Terms: Animals, Association Learning, Automation, Laboratory, Conditioning, Classical, Drosophila, Electroshock, Equipment Design, Memory, Long-Term, Memory, Short-Term, Odorants, Olfactory Perception, Pattern Recognition, Automated, Physical Stimulation, Psychological Tests, Software
Show Abstract · Added February 8, 2016
BACKGROUND - Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies.
NEW METHOD - The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays.
RESULTS - The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement.
COMPARISON WITH EXISTING METHODS - The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators.
CONCLUSIONS - This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays.
Copyright © 2015 Elsevier B.V. All rights reserved.
1 Communities
2 Members
0 Resources
15 MeSH Terms
Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects.
Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK
(2016) Neuropsychopharmacology 41: 1166-78
MeSH Terms: Alkynes, Allosteric Regulation, Animals, Anti-Anxiety Agents, Antidepressive Agents, Brain, Cocaine, Conditioning, Classical, Conditioning, Operant, Dose-Response Relationship, Drug, Drug-Seeking Behavior, Male, Mice, Motor Activity, Phencyclidine, Pyridines, Rats, Sprague-Dawley, Receptor, Metabotropic Glutamate 5, Self Administration, Thiazoles
Show Abstract · Added February 18, 2016
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Effect of circadian phase on memory acquisition and recall: operant conditioning vs. classical conditioning.
Garren MV, Sexauer SB, Page TL
(2013) PLoS One 8: e58693
MeSH Terms: Animals, Circadian Rhythm, Cockroaches, Conditioning, Classical, Conditioning, Operant, Memory, Mental Recall
Show Abstract · Added May 29, 2014
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.
Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin SY, Rabah D, Kinet JP, Shin HS
(2010) Nat Neurosci 13: 482-8
MeSH Terms: Animals, Calcium Channels, L-Type, Cerebral Cortex, Conditioning, Classical, Fear, Female, Freezing Reaction, Cataleptic, Gyrus Cinguli, Learning, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Pain, Pain Measurement, Protein Subunits, Rats, Rats, Sprague-Dawley, Social Behavior
Show Abstract · Added May 29, 2014
Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.
0 Communities
1 Members
0 Resources
19 MeSH Terms
An emotion-induced attentional blink elicited by aversively conditioned stimuli.
Smith SD, Most SB, Newsome LA, Zald DH
(2006) Emotion 6: 523-7
MeSH Terms: Acoustic Stimulation, Adult, Arousal, Association Learning, Attention, Avoidance Learning, Conditioning, Classical, Discrimination Learning, Emotions, Female, Humans, Male, Pattern Recognition, Visual, Proactive Inhibition, Reaction Time, Set (Psychology)
Show Abstract · Added May 27, 2014
The current study examines whether aversively conditioned stimuli can modulate attention to such a degree that they impair the perception of subsequently presented nonemotional targets. In the initial phase of this study, participants viewed 3 categories of photographs, 1 of which was paired with an aversive noise. Following conditioning, participants searched for a target embedded within a series of 17 rapidly presented images on each trial. Critically, a conditioned or unconditioned item from the initial phase appeared 200 ms or 800 ms before the target. At 200-ms lags but not 800-ms lags, the conditioned images impaired target detection relative to the other distractors. Thus, temporary visual deficits can be induced by otherwise neutral distractors whose aversive associations have only recently been learned.
(c) 2006 APA, all rights reserved
0 Communities
1 Members
0 Resources
16 MeSH Terms
Norepinephrine transporter-deficient mice respond to anxiety producing and fearful environments with bradycardia and hypotension.
Keller NR, Diedrich A, Appalsamy M, Miller LC, Caron MG, McDonald MP, Shelton RC, Blakely RD, Robertson D
(2006) Neuroscience 139: 931-46
MeSH Terms: Animals, Anxiety, Bradycardia, Conditioning, Classical, Fear, Female, Hypertension, Male, Mice, Mice, Knockout, Norepinephrine Plasma Membrane Transport Proteins, Reflex, Startle
Show Abstract · Added December 10, 2013
The study of anxiety and fear involves complex interrelationships between psychiatry and the autonomic nervous system. Altered noradrenergic signaling is linked to certain types of depression and anxiety disorders, and treatment often includes specific transporter blockade. The norepinephrine transporter is crucial in limiting catecholaminergic signaling. Norepinephrine transporter-deficient mice have increased circulating catecholamines and elevated heart rate and blood pressure. We hypothesized, therefore, that reduced norepinephrine clearance would heighten the autonomic cardiovascular response to anxiety and fear. In separate experiments, norepinephrine transporter-deficient (norepinephrine transporter-/-) mice underwent tactile startle and trace fear conditioning to measure hemodynamic responses. A dramatic tachycardia was observed in norepinephrine transporter-/- mice compared with controls following both airpuff or footshock stimuli, and pressure changes were also greater. Interestingly, in contrast to normally elevated home cage levels in norepinephrine transporter-deficient mice, prestimulus heart rate and blood pressure were actually higher in norepinephrine transporter+/+ animals throughout behavioral testing. Upon placement in the behavioral chamber, norepinephrine transporter-deficient mice demonstrated a notable bradycardia and depressor effect that was more pronounced in females. Power spectral analysis indicated an increase in low frequency oscillations of heart rate variability; in mice, suggesting increased parasympathetic tone. Finally, norepinephrine transporter-/- mice exhibited sexual dimorphism in freeze behavior, which was greatest in females. Therefore, while reduced catecholamine clearance amplifies immediate cardiovascular responses to anxiety- or fear-inducing stimuli in norepinephrine transporter-/- mice, norepinephrine transporter deficiency apparently prevents protracted hemodynamic escalation in a fearful environment. Conceivably, chronic norepinephrine transporter blockade with transporter-specific drugs might attenuate recognition of autonomic and somatic distress signals in individuals with anxiety disorders, possibly lessening their behavioral reactivity, and reducing the cardiovascular risk factors associated with persistent emotional arousal.
1 Communities
2 Members
0 Resources
12 MeSH Terms
Conditionability of cancer chemotherapy patients.
Ingle RJ, Burish TG, Wallston KA
(1984) Oncol Nurs Forum 11: 97-102
MeSH Terms: Adult, Aged, Antineoplastic Agents, Conditioning, Classical, Female, Humans, Male, Middle Aged, Nausea, Vomiting
Added July 28, 2015
0 Communities
1 Members
0 Resources
10 MeSH Terms