Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 260

Publication Record

Connections

Phenotypes of primary retinal macroglia: Implications for purification and culture conditions.
Backstrom JR, Sheng J, Fischer RA, Sappington RM, Rex TS
(2019) Exp Eye Res 182: 85-92
MeSH Terms: Animals, Astrocytes, Cell Communication, Cell Culture Techniques, Cell Differentiation, Culture Media, Neuroglia, Phenotype, Rats, Rats, Sprague-Dawley, Retina, Retinal Neurons
Show Abstract · Added April 2, 2019
Many neurodegenerations, including those of the visual system, have complex etiologies that include roles for both neurons and glia. In the retina there is evidence that retinal astrocytes play an important role in neurodegeneration. There are several approaches for isolating and growing primary retinal astrocytes, however, they often lead to different results. In this study, we examined the influence of culture conditions on phenotypic maturation of primary, purified retinal glia. We compared retinal astrocytes and Müller glia purified by immunomagnetic separation, as differentiation between these astrocyte subtypes is critical and immuno-based methods are the standard practice of purification. We found that while time in culture impacts the health and phenotype of both astrocytes and Müller glia, the phenotypic maturation of retinal astrocytes was most impacted by serum factors. These factors appeared to actively regulate intermediate filament phenotypes in a manner consistent with the induction of astrocyte-mesenchymal transition (AMT). This propensity for retinal astrocytes to shift along an AMT continuum should be considered when interpreting resulting data. Our goal is that this study will help standardize the field so that studies are replicable, comparable, and as accurate as possible for subsequent interpretation of findings.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Substrate stiffness heterogeneities disrupt endothelial barrier integrity in a micropillar model of heterogeneous vascular stiffening.
VanderBurgh JA, Hotchkiss H, Potharazu A, Taufalele PV, Reinhart-King CA
(2018) Integr Biol (Camb) 10: 734-746
MeSH Terms: Adherens Junctions, Animals, Aorta, Atherosclerosis, Cattle, Cell Adhesion, Cell Communication, Cell Movement, Dimethylpolysiloxanes, Endothelial Cells, Endothelium, Vascular, Focal Adhesions, Human Umbilical Vein Endothelial Cells, Humans, Leukocytes, Materials Testing, Neutrophils, Phenotype, Tunica Intima, Vascular Stiffness, Vinculin
Show Abstract · Added April 10, 2019
Intimal stiffening has been linked with increased vascular permeability and leukocyte transmigration, hallmarks of atherosclerosis. However, recent evidence indicates age-related intimal stiffening is not uniform but rather characterized by increased point-to-point heterogeneity in subendothelial matrix stiffness, the impact of which is much less understood. To investigate the impact of spatially heterogeneous matrix rigidity on endothelial monolayer integrity, we develop a micropillar model to introduce closely-spaced, step-changes in substrate rigidity and compare endothelial monolayer phenotype to rigidity-matched, uniformly stiff and compliant substrates. We found equivalent disruption of adherens junctions within monolayers on step-rigidity and uniformly stiff substrates relative to uniformly compliant substrates. Similarly, monolayers cultured on step-rigidity substrates exhibited equivalent percentages of leukocyte transmigration to monolayers on rigidity-matched, uniformly stiff substrates. Adherens junction tension and focal adhesion density, but not size, increased within monolayers on step-rigidity and uniformly stiff substrates compared to more compliant substrates suggesting that elevated tension is disrupting adherens junction integrity. Leukocyte transmigration frequency and time, focal adhesion size, and focal adhesion density did not differ between stiff and compliant sub-regions of step-rigidity substrates. Overall, our results suggest that endothelial monolayers exposed to mechanically heterogeneous substrates adopt the phenotype associated with the stiffer matrix, indicating that spatial heterogeneities in intimal stiffness observed with age could disrupt endothelial barrier integrity and contribute to atherogenesis.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Empowering genomic medicine by establishing critical sequencing result data flows: the eMERGE example.
Aronson S, Babb L, Ames D, Gibbs RA, Venner E, Connelly JJ, Marsolo K, Weng C, Williams MS, Hartzler AL, Liang WH, Ralston JD, Devine EB, Murphy S, Chute CG, Caraballo PJ, Kullo IJ, Freimuth RR, Rasmussen LV, Wehbe FH, Peterson JF, Robinson JR, Wiley K, Overby Taylor C, eMERGE Network EHRI Working Group
(2018) J Am Med Inform Assoc 25: 1375-1381
MeSH Terms: Computer Communication Networks, Electronic Health Records, Genetic Testing, Genome, Human, Genomics, Humans, Information Dissemination, Sequence Analysis, DNA, United States
Show Abstract · Added June 27, 2018
The eMERGE Network is establishing methods for electronic transmittal of patient genetic test results from laboratories to healthcare providers across organizational boundaries. We surveyed the capabilities and needs of different network participants, established a common transfer format, and implemented transfer mechanisms based on this format. The interfaces we created are examples of the connectivity that must be instantiated before electronic genetic and genomic clinical decision support can be effectively built at the point of care. This work serves as a case example for both standards bodies and other organizations working to build the infrastructure required to provide better electronic clinical decision support for clinicians.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide.
Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, Elijovich F, Laffer CL, Gnecco JS, Noonan J, Maffia P, Jasiewicz-Honkisz B, Czesnikiewicz-Guzik M, Mikolajczyk T, Sliwa T, Dikalov S, Weyand CM, Guzik TJ, Harrison DG
(2018) Cardiovasc Res 114: 1547-1563
MeSH Terms: Aged, Angiotensin II, Animals, Blood Pressure, Case-Control Studies, Cell Communication, Cell Differentiation, Cells, Cultured, Coculture Techniques, Disease Models, Animal, Endothelial Cells, Female, Humans, Hydrogen Peroxide, Hypertension, Interleukin-6, Male, Mechanotransduction, Cellular, Mice, Inbred C57BL, Middle Aged, Monocytes, Nitric Oxide, Phenotype, STAT3 Transcription Factor, Stress, Mechanical
Show Abstract · Added March 26, 2019
Aims - Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function.
Methods and results - Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1β, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3.
Conclusions - These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Successful Establishment of Primary Type II Alveolar Epithelium with 3D Organotypic Coculture.
Sucre JMS, Jetter CS, Loomans H, Williams J, Plosa EJ, Benjamin JT, Young LR, Kropski JA, Calvi CL, Kook S, Wang P, Gleaves L, Eskaros A, Goetzl L, Blackwell TS, Guttentag SH, Zijlstra A
(2018) Am J Respir Cell Mol Biol 59: 158-166
MeSH Terms: Cell Communication, Cells, Cultured, Coculture Techniques, Epithelial Cells, Fibroblasts, Humans, Lung, Lung Injury, Phenotype
Show Abstract · Added April 1, 2019
Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.
0 Communities
2 Members
0 Resources
9 MeSH Terms
Size matters in nanoscale communication.
Zijlstra A, Di Vizio D
(2018) Nat Cell Biol 20: 228-230
MeSH Terms: Communication, Extracellular Vesicles, Nanoparticles
Added March 22, 2018
0 Communities
1 Members
0 Resources
3 MeSH Terms
Randomised controlled pragmatic clinical trial evaluating the effectiveness of a discharge follow-up phone call on 30-day hospital readmissions: balancing pragmatic and explanatory design considerations.
Yiadom MYAB, Domenico H, Byrne D, Hasselblad MM, Gatto CL, Kripalani S, Choma N, Tucker S, Wang L, Bhatia MC, Morrison J, Harrell FE, Hartert T, Bernard G
(2018) BMJ Open 8: e019600
MeSH Terms: Adult, Aftercare, Communication, Emergency Service, Hospital, Female, Hospitalization, Humans, Male, Mortality, Patient Discharge, Patient Readmission, Patient Satisfaction, Research Design, Telemedicine, Telephone, Transitional Care
Show Abstract · Added March 14, 2018
INTRODUCTION - Hospital readmissions within 30 days are a healthcare quality problem associated with increased costs and poor health outcomes. Identifying interventions to improve patients' successful transition from inpatient to outpatient care is a continued challenge.
METHODS AND ANALYSIS - This is a single-centre pragmatic randomised and controlled clinical trial examining the effectiveness of a discharge follow-up phone call to reduce 30-day inpatient readmissions. Our primary endpoint is inpatient readmission within 30 days of hospital discharge censored for death analysed with an intention-to-treat approach. Secondary endpoints included observation status readmission within 30 days, time to readmission, all-cause emergency department revisits within 30 days, patient satisfaction (measured as mean Hospital Consumer Assessment of Healthcare Providers and Systems scores) and 30-day mortality. Exploratory endpoints include the need for assistance with discharge plan implementation among those randomised to the intervention arm and reached by the study nurse, and the number of call attempts to achieve successful intervention delivery. Consistent with the Learning Healthcare System model for clinical research, timeliness is a critical quality for studies to most effectively inform hospital clinical practice. We are challenged to apply pragmatic design elements in order to maintain a high-quality practicable study providing timely results. This type of prospective pragmatic trial empowers the advancement of hospital-wide evidence-based practice directly affecting patients.
ETHICS AND DISSEMINATION - Study results will inform the structure, objective and function of future iterations of the hospital's discharge follow-up phone call programme and be submitted for publication in the literature.
TRIAL REGISTRATION NUMBER - NCT03050918; Pre-results.
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
0 Communities
1 Members
0 Resources
16 MeSH Terms
SJS/TEN 2017: Building Multidisciplinary Networks to Drive Science and Translation.
White KD, Abe R, Ardern-Jones M, Beachkofsky T, Bouchard C, Carleton B, Chodosh J, Cibotti R, Davis R, Denny JC, Dodiuk-Gad RP, Ergen EN, Goldman JL, Holmes JH, Hung SI, Lacouture ME, Lehloenya RJ, Mallal S, Manolio TA, Micheletti RG, Mitchell CM, Mockenhaupt M, Ostrov DA, Pavlos R, Pirmohamed M, Pope E, Redwood A, Rosenbach M, Rosenblum MD, Roujeau JC, Saavedra AP, Saeed HN, Struewing JP, Sueki H, Sukasem C, Sung C, Trubiano JA, Weintraub J, Wheatley LM, Williams KB, Worley B, Chung WH, Shear NH, Phillips EJ
(2018) J Allergy Clin Immunol Pract 6: 38-69
MeSH Terms: Aged, Child, Congresses as Topic, Early Diagnosis, Electronic Health Records, Expert Testimony, Female, Humans, Interdisciplinary Communication, Male, Pregnancy, Stevens-Johnson Syndrome, Translational Medical Research, United States
Show Abstract · Added March 14, 2018
Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a life-threatening, immunologically mediated, and usually drug-induced disease with a high burden to individuals, their families, and society with an annual incidence of 1 to 5 per 1,000,000. To effect significant reduction in short- and long-term morbidity and mortality, and advance clinical care and research, coordination of multiple medical, surgical, behavioral, and basic scientific disciplines is required. On March 2, 2017, an investigator-driven meeting was held immediately before the American Academy of Dermatology Annual meeting for the central purpose of assembling, for the first time in the United States, clinicians and scientists from multiple disciplines involved in SJS/TEN clinical care and basic science research. As a product of this meeting, this article summarizes the current state of knowledge and expert opinion related to SJS/TEN covering a broad spectrum of topics including epidemiology and pharmacogenomic networks; clinical management and complications; special populations such as pediatrics, the elderly, and pregnant women; regulatory issues and the electronic health record; new agents that cause SJS/TEN; pharmacogenomics and immunopathogenesis; and the patient perspective. Goals include the maintenance of a durable and productive multidisciplinary network that will significantly further scientific progress and translation into prevention, early diagnosis, and management of SJS/TEN.
Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Communication About the Probability of Cancer in Indeterminate Pulmonary Nodules.
Maiga AW, Deppen SA, Massion PP, Callaway-Lane C, Pinkerman R, Dittus RS, Lambright ES, Nesbitt JC, Grogan EL
(2018) JAMA Surg 153: 353-357
MeSH Terms: Aged, Communication, Documentation, Female, Guideline Adherence, Humans, Lung Neoplasms, Male, Medical Records, Middle Aged, Practice Guidelines as Topic, Probability, Retrospective Studies, Risk Assessment, Risk Factors, Solitary Pulmonary Nodule
Show Abstract · Added January 29, 2018
Importance - Clinical guidelines recommend that clinicians estimate the probability of malignancy for patients with indeterminate pulmonary nodules (IPNs) larger than 8 mm. Adherence to these guidelines is unknown.
Objectives - To determine whether clinicians document the probability of malignancy in high-risk IPNs and to compare these quantitative or qualitative predictions with the validated Mayo Clinic Model.
Design, Setting, and Participants - Single-institution, retrospective cohort study of patients from a tertiary care Department of Veterans Affairs hospital from January 1, 2003, through December 31, 2015. Cohort 1 included 291 veterans undergoing surgical resection of known or suspected lung cancer from January 1, 2003, through December 31, 2015. Cohort 2 included a random sample of 239 veterans undergoing inpatient or outpatient pulmonary evaluation of IPNs at the hospital from January 1, 2003, through December 31, 2012.
Exposures - Clinician documentation of the quantitative or qualitative probability of malignancy.
Main Outcomes and Measures - Documentation from pulmonary and/or thoracic surgery clinicians as well as information from multidisciplinary tumor board presentations was reviewed. Any documented quantitative or qualitative predictions of malignancy were extracted and summarized using descriptive statistics. Clinicians' predictions were compared with risk estimates from the Mayo Clinic Model.
Results - Of 291 patients in cohort 1, 282 (96.9%) were men; mean (SD) age was 64.6 (9.0) years. Of 239 patients in cohort 2, 233 (97.5%) were men; mean (SD) age was 65.5 (10.8) years. Cancer prevalence was 258 of 291 cases (88.7%) in cohort 1 and 110 of 225 patients with a definitive diagnosis (48.9%) in cohort 2. Only 13 patients (4.5%) in cohort 1 and 3 (1.3%) in cohort 2 had a documented quantitative prediction of malignancy prior to tissue diagnosis. Of the remaining patients, 217 of 278 (78.1%) in cohort 1 and 149 of 236 (63.1%) in cohort 2 had qualitative statements of cancer risk. In cohort 2, 23 of 79 patients (29.1%) without any documented malignancy risk statements had a final diagnosis of cancer. Qualitative risk statements were distributed among 32 broad categories. The most frequently used statements aligned well with Mayo Clinic Model predictions for cohort 1 compared with cohort 2. The median Mayo Clinic Model-predicted probability of cancer was 68.7% (range, 2.4%-100.0%). Qualitative risk statements roughly aligned with Mayo predictions.
Conclusions and Relevance - Clinicians rarely provide quantitative documentation of cancer probability for high-risk IPNs, even among patients drawn from a broad range of cancer probabilities. Qualitative statements of cancer risk in current practice are imprecise and highly variable. A standard scale that correlates with predicted cancer risk for IPNs should be used to communicate with patients and other clinicians.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ
(2017) J Cell Biol 216: 3799-3816
MeSH Terms: Cancer-Associated Fibroblasts, Cell Communication, Cell Line, Tumor, Cell Movement, Coculture Techniques, Extracellular Matrix, Fibronectins, Humans, Integrin alpha5beta1, Male, Mechanotransduction, Cellular, Neoplasm Invasiveness, Nonmuscle Myosin Type IIA, Prostatic Neoplasms, RNA Interference, Receptor, Platelet-Derived Growth Factor alpha, Time Factors, Transfection, Tumor Cells, Cultured, Tumor Microenvironment
Show Abstract · Added March 14, 2018
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
© 2017 Erdogan et al.
0 Communities
1 Members
0 Resources
20 MeSH Terms