Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 6 of 6

Publication Record

Connections

Global analysis reveals the complexity of the human glomerular extracellular matrix.
Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ
(2014) J Am Soc Nephrol 25: 939-51
MeSH Terms: Adult, Collagen Type VI, Extracellular Matrix Proteins, Gene Ontology, Humans, Kidney Glomerulus, Lipocalins, Male, Mass Spectrometry, Middle Aged, Protein Interaction Maps, Proteome
Show Abstract · Added February 25, 2014
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456.
Copyright © 2014 by the American Society of Nephrology.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations.
Gray RS, Wilm TP, Smith J, Bagnat M, Dale RM, Topczewski J, Johnson SL, Solnica-Krezel L
(2014) Dev Biol 386: 72-85
MeSH Terms: Alleles, Animals, Collagen Type VIII, Crosses, Genetic, Gene Expression Regulation, Developmental, In Situ Hybridization, Meiosis, Microscopy, Confocal, Microscopy, Electron, Transmission, Mutation, Notochord, Osteoblasts, Protein-Lysine 6-Oxidase, Spine, Time Factors, Zebrafish
Show Abstract · Added March 20, 2014
Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice.
Kang L, Mayes WH, James FD, Bracy DP, Wasserman DH
(2014) Diabetologia 57: 603-13
MeSH Terms: Animals, Blood Glucose, Body Weight, Collagen Type V, Diet, High-Fat, Extracellular Matrix, Gene Deletion, Glucose Clamp Technique, Immunohistochemistry, Insulin, Insulin Resistance, Insulin Secretion, Matrix Metalloproteinase 9, Mice, Muscle, Skeletal, Vascular Endothelial Growth Factor A
Show Abstract · Added April 17, 2014
AIMS/HYPOTHESIS - Increased extracellular matrix (ECM) collagen is a characteristic of muscle insulin resistance. Matrix metalloproteinase (MMP) 9 is a primary enzyme that degrades collagen IV (ColIV). As a component of the basement membrane, ColIV plays a key role in ECM remodelling. We tested the hypotheses that genetic deletion of MMP9 in mice increases muscle ColIV, induces insulin resistance in lean mice and worsens diet-induced muscle insulin resistance.
METHODS - Wild-type (Mmp9(+/+)) and Mmp9-null (Mmp9(-/-)) mice were chow or high-fat (HF) fed for 16 weeks. Insulin action was measured by the hyperinsulinaemic-euglycaemic clamp in conscious weight-matched surgically catheterised mice.
RESULTS - Mmp9(-/-) and HF feeding independently increased muscle ColIV. ColIV in HF-fed Mmp9(-/-) mice was further increased. Mmp9(-/-) did not affect fasting insulin or glucose in chow- or HF-fed mice. The glucose infusion rate (GIR), endogenous glucose appearance (EndoRa) and glucose disappearance (Rd) rates, and a muscle glucose metabolic index (Rg), were the same in chow-fed Mmp9(+/+) and Mmp9(-/-) mice. In contrast, HF-fed Mmp9(-/-) mice had decreased GIR, insulin-stimulated increase in Rd and muscle Rg. Insulin-stimulated suppression of EndoRa, however, remained the same in HF-fed Mmp9(-/-) and Mmp9(+/+) mice. Decreased muscle Rg in HF-fed Mmp9(-/-) was associated with decreased muscle capillaries.
CONCLUSIONS/INTERPRETATION - Despite increased muscle ColIV, genetic deletion of MMP9 does not induce insulin resistance in lean mice. In contrast, this deletion results in a more profound state of insulin resistance, specifically in the skeletal muscle of HF-fed mice. These results highlight the importance of ECM remodelling in determining muscle insulin resistance in the presence of HF diet.
2 Communities
2 Members
0 Resources
16 MeSH Terms
The crucial role of trimerization domains in collagen folding.
Boudko SP, Engel J, Bächinger HP
(2012) Int J Biochem Cell Biol 44: 21-32
MeSH Terms: Amino Acid Sequence, Circular Dichroism, Collagen, Collagen Type IV, Collagen Type VIII, Collagen Type X, Humans, Models, Molecular, Molecular Sequence Data, Protein Conformation, Protein Folding, Protein Structure, Tertiary
Show Abstract · Added November 2, 2017
Collagens contain large numbers of Gly-Xaa-Yaa peptide repeats that form the characteristic triple helix, where the individual chains fold into a polyproline II helix and three of these helices form a right-handed triple helix. For the proper folding of the triple helix collagens contain trimerization domains. These domains ensure a single starting point for triple helix formation and are also responsible for the chain selection in heterotrimeric collagens. Trimerization domains are non-collagenous domains of very different structures. The size of trimerization domains varies from 35 residues in type IX collagen to around 250 residues for the fibrillar collagens. These domains are not only crucial for biological functions, but they are also attractive tools for generating recombinant collagen fragments of interest as well as for general use in protein engineering and biomaterial design. Here we review the current knowledge of the structure and function of these trimerization domains.
Copyright © 2011 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice.
Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, Pozzi A, Zutter MM, Wasserman DH
(2011) Diabetes 60: 416-26
MeSH Terms: Analysis of Variance, Animals, Blotting, Western, Collagen Type III, Collagen Type V, Diet, Extracellular Matrix, Glucose Clamp Technique, Immunohistochemistry, Insulin, Insulin Resistance, Integrin alpha2beta1, Matrix Metalloproteinase 9, Mice, Mice, Knockout, Muscle, Skeletal, Phosphodiesterase 5 Inhibitors, Piperazines, Purines, Reverse Transcriptase Polymerase Chain Reaction, Sildenafil Citrate, Sulfones
Show Abstract · Added February 24, 2014
OBJECTIVE - The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)β(1) was tested.
RESEARCH DESIGN AND METHODS - The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)β(1)-null (itga2(-/-)), integrin α(1)β(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)β(1) and integrin α(1)β(1) signaling pathways have opposing actions.
RESULTS - HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates.
CONCLUSIONS - ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)β(1) interaction.
2 Communities
4 Members
0 Resources
22 MeSH Terms
Molecular targets for tumour progression in gastrointestinal stromal tumours.
Koon N, Schneider-Stock R, Sarlomo-Rikala M, Lasota J, Smolkin M, Petroni G, Zaika A, Boltze C, Meyer F, Andersson L, Knuutila S, Miettinen M, El-Rifai W
(2004) Gut 53: 235-40
MeSH Terms: Chromosomal Proteins, Non-Histone, Collagen Type VIII, Cytoskeletal Proteins, DNA-Binding Proteins, Endosomal Sorting Complexes Required for Transport, Focal Adhesion Kinase 2, Gastrointestinal Neoplasms, Gene Expression, Genetic Markers, HMGB2 Protein, Humans, Microfilament Proteins, Neoplasm Proteins, Oligonucleotide Array Sequence Analysis, Phosphoproteins, Prognosis, Protein-Serine-Threonine Kinases, Protein-Tyrosine Kinases, Reverse Transcriptase Polymerase Chain Reaction, Transcription Factors
Show Abstract · Added March 5, 2014
BACKGROUND AND AIMS - The distinction between benign and malignant gastrointestinal stromal tumours (GISTs) is often unclear at the clinical and histopathology levels. GISTs are believed to arise from the stem cells of Cajal. In order to define genetic biomarkers and identify target genes related to GIST progression, we analysed and compared benign and malignant GISTs with verified follow up data using cDNA expression arrays.
METHODS - Eight genes were frequently overexpressed in malignant GISTs and their overexpression was confirmed using quantitative real time reverse transcription-polymerase chain reaction. These genes included ezrin (villin 2 (VIL2)), collagen 8 alpha 1 subunit (COL8A1), G2/mitotic specific cyclin B1 (CCNB1), high mobility group protein (HMG2), TSG101 tumour susceptibility protein, CENP-F kinetochore protein, protein tyrosine kinase 2 (FAK), and protein kinase DYRK2. To test these genes in a clinical setting, we obtained diagnostic samples of 16 additional GISTs that were classified at diagnosis as benign, malignant, and uncertain malignant potential (UMP).
RESULTS - There was remarkable gene overexpression in all malignant GISTs. Statistical analyses revealed significant correlations between overexpression of several gene pairs in malignant GISTs. We found the strongest correlations (rho>0.70) among the significant correlations (p<0.01) between CCNB1-CENP-F (rho = 0.87) and CCNB1-FAK (rho = 0.73). Gene expression of the UMP GISTs suggested two different groups. Three UMP GISTs had gene expression consistent with malignant tumours and their follow up data revealed that indeed these patients had recurrences later on. On the other hand, UMP GISTs that had low gene expression levels continued free of disease for several years.
CONCLUSIONS - These results provide insight into the oncogenesis of GISTs and suggest that testing the expression profile of a number of genes may segregate GISTs into groups of different tumour behaviour.
0 Communities
2 Members
0 Resources
20 MeSH Terms