Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 23

Publication Record


The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation.
Jerrell RJ, Leih MJ, Parekh A
(2019) Wound Repair Regen 27: 29-38
MeSH Terms: Adult, Cell Differentiation, Cells, Cultured, Cicatrix, Collagen Type III, Extracellular Matrix, Female, Fetus, Fibroblasts, Gene Expression Regulation, Humans, Male, Myofibroblasts, Phenotype, Pregnancy, Transforming Growth Factor beta1, Wound Healing, Young Adult
Show Abstract · Added March 18, 2020
During the dermal wound healing process, the mechanical rigidity of the newly deposited extracellular matrix and transforming growth factor-β1 promote the transition of fibroblasts into myofibroblasts. Myofibroblasts generate large cellular forces that contract and remodel the extracellular matrix leading to scar formation. In contrast, myofibroblasts are not detected in fetal dermal wounds which are more compliant and contain less transforming growth factor-β1 than adult wounds. Instead, fetal fibroblasts orchestrate scarless healing of dermal wounds resulting in healed tissues that resemble uninjured dermis. While these biomechanical differences suggest that the fetal wound environment promotes smaller cellular forces which enable regeneration, previous studies indicate that fetal fibroblasts have unique contractile properties that may facilitate scarless dermal repair. Therefore, we tested whether physiologic wound rigidities and transforming growth factor-β1 induce contractile forces and myofibroblast differentiation of fetal dermal fibroblasts. In comparison to their adult dermal counterparts, we found that fetal fibroblasts exhibit a deficient contractile response to rigid extracellular matrix and transforming growth factor-β1. Our data suggest that the contractile phenotype of fetal dermal fibroblasts limits their cellular force production and prevents their ability to differentiate into myofibroblasts.
© 2018 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of by the Wound Healing Society.
0 Communities
1 Members
0 Resources
MeSH Terms
FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation.
Karolak MR, Yang X, Elefteriou F
(2015) Hum Mol Genet 24: 2552-64
MeSH Terms: Animals, Chondrocytes, Chondrogenesis, Collagen Type II, Female, Gene Expression, Gene Knockout Techniques, Growth Plate, Hypertrophy, Male, Mice, Mice, Knockout, Neurofibromin 1, Osteoclasts, Osteogenesis, Phenotype, Phenylurea Compounds, Protein Transport, Pyrimidines, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 3, Signal Transduction
Show Abstract · Added February 19, 2015
Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1.
de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, Joubert S, Baglio SR, Granchi D, Stevenson DA, Rios JJ, Nyman JS, Elefteriou F
(2014) Nat Med 20: 904-10
MeSH Terms: Adolescent, Alkaline Phosphatase, Animals, Bone Development, Bone Diseases, Developmental, Bone Morphogenetic Protein 2, Calcification, Physiologic, Cells, Cultured, Child, Child, Preschool, Collagen Type I, Collagen Type II, Diphosphates, Disease Models, Animal, Durapatite, Humans, Immunoglobulin G, Infant, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitogen-Activated Protein Kinases, Neurofibromatosis 1, Neurofibromin 1, Osteoblasts, Osteogenesis, Phosphate Transport Proteins, Phosphoric Diester Hydrolases, Pyrophosphatases, Recombinant Fusion Proteins, Sp7 Transcription Factor, Transcription Factors
Show Abstract · Added July 28, 2014
Individuals with neurofibromatosis type-1 (NF1) can manifest focal skeletal dysplasias that remain extremely difficult to treat. NF1 is caused by mutations in the NF1 gene, which encodes the RAS GTPase-activating protein neurofibromin. We report here that ablation of Nf1 in bone-forming cells leads to supraphysiologic accumulation of pyrophosphate (PPi), a strong inhibitor of hydroxyapatite formation, and that a chronic extracellular signal-regulated kinase (ERK)-dependent increase in expression of genes promoting PPi synthesis and extracellular transport, namely Enpp1 and Ank, causes this phenotype. Nf1 ablation also prevents bone morphogenic protein-2-induced osteoprogenitor differentiation and, consequently, expression of alkaline phosphatase and PPi breakdown, further contributing to PPi accumulation. The short stature and impaired bone mineralization and strength in mice lacking Nf1 in osteochondroprogenitors or osteoblasts can be corrected by asfotase-α enzyme therapy aimed at reducing PPi concentration. These results establish neurofibromin as an essential regulator of bone mineralization. They also suggest that altered PPi homeostasis contributes to the skeletal dysplasias associated with NF1 and that some of the NF1 skeletal conditions could be prevented pharmacologically.
2 Communities
4 Members
0 Resources
32 MeSH Terms
Genetic epidemiology of pelvic organ prolapse: a systematic review.
Ward RM, Velez Edwards DR, Edwards T, Giri A, Jerome RN, Wu JM
(2014) Am J Obstet Gynecol 211: 326-35
MeSH Terms: Collagen Type III, Female, Genetic Markers, Genetic Predisposition to Disease, Genome-Wide Association Study, Global Health, Humans, Models, Statistical, Molecular Epidemiology, Odds Ratio, Pelvic Organ Prolapse, Polymorphism, Single Nucleotide
Show Abstract · Added February 22, 2016
Given current evidence supporting a genetic predisposition for pelvic organ prolapse, we conducted a systematic review of published literature on the genetic epidemiology of pelvic organ prolapse. Inclusion criteria were linkage studies, candidate gene association and genome-wide association studies in adult women published in English and indexed in PubMed through Dec. 2012, with no limit on date of publication. Methodology adhered to the PRISMA guidelines. Data were systematically extracted by 2 reviewers and graded by the Venice criteria for studies of genetic associations. A metaanalysis was performed on all single nucleotide polymorphisms evaluated by 2 or more studies with similar methodology. The metaanalysis suggests that collagen type 3 alpha 1 (COL3A1) rs1800255 genotype AA is associated with pelvic organ prolapse (odds ratio, 4.79; 95% confidence interval, 1.91-11.98; P = .001) compared with the reference genotype GG in populations of Asian and Dutch women. There was little evidence of heterogeneity for rs1800255 (P value for heterogeneity = .94; proportion of variance because of heterogeneity, I(2) = 0.00%). There was insufficient evidence to determine whether other single nucleotide polymorphisms evaluated by 2 or more papers were associated with pelvic organ prolapse. An association with pelvic organ prolapse was seen in individual studies for estrogen receptor alpha (ER-α) rs2228480 GA, COL3A1 exon 31, chromosome 9q21 (heterogeneity logarithm of the odds score 3.41) as well as 6 single nucleotide polymorphisms identified by a genome-wide association study. Overall, individual studies were of small sample size and often of poor quality. Future studies would benefit from more rigorous study design as outlined in the Venice recommendations.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice.
Frolov A, Yang L, Dong H, Hammock BD, Crofford LJ
(2013) Prostaglandins Leukot Essent Fatty Acids 89: 351-8
MeSH Terms: Animals, Arthritis, Experimental, Autoantibodies, Chromatography, Liquid, Collagen Type II, Dinoprostone, Female, Gene Deletion, Inflammation, Intramolecular Oxidoreductases, Joints, Lipid Metabolism, Macrophages, Male, Mice, Neutrophil Infiltration, Neutrophils, Prostaglandin-E Synthases, Severity of Illness Index, Tandem Mass Spectrometry
Show Abstract · Added January 21, 2015
Prostanoids and PGE2 in particular have been long viewed as one of the major mediators of inflammation in arthritis. However, experimental data indicate that PGE2 can serve both pro- and anti-inflammatory functions. We have previously shown (Kojima et al., J. Immunol. 180 (2008) 8361-8368) that microsomal prostaglandin E synthase-1 (mPGES-1) deletion, which regulates PGE2 production, resulted in the suppression of collagen-induced arthritis (CIA) in mice. This suppression was attributable, at least in part, to the impaired generation of type II collagen autoantibodies. In order to examine the function of mPGES-1 and PGE2 in a non-autoimmune form of arthritis, we used the collagen antibody-induced arthritis (CAIA) model in mice deficient in mPGES-1, thereby bypassing the engagement of the adaptive immune response in arthritis development. Here we report that mPGES-1 deletion significantly increased CAIA disease severity. The latter was associated with a significant (~3.6) upregulation of neutrophil, but not macrophage, recruitment to the inflamed joints. The lipidomic analysis of the arthritic mouse paws by quantitative liquid chromatography/tandem mass-spectrometry (LC/MS/MS) revealed a dramatic (~59-fold) reduction of PGE2 at the peak of arthritis. Altogether, this study highlights mPGES-1 and its product PGE2 as important negative regulators of neutrophil-mediated inflammation and suggests that specific mPGES-1 inhibitors may have differential effects on different types of inflammation. Furthermore, neutrophil-mediated diseases could be exacerbated by inhibition of mPGES-1.
© 2013 Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Vascular Ehlers-Danlos syndrome mutations in type III collagen differently stall the triple helical folding.
Mizuno K, Boudko S, Engel J, Bächinger HP
(2013) J Biol Chem 288: 19166-76
MeSH Terms: Circular Dichroism, Collagen, Collagen Type III, Ehlers-Danlos Syndrome, Humans, Mutation, Peptidylprolyl Isomerase, Point Mutation, Protein Folding, Protein Processing, Post-Translational, Protein Structure, Secondary, Protein Structure, Tertiary, Recombinant Proteins, Temperature, Trypsin
Show Abstract · Added November 2, 2017
Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh.
Wang W, Lian N, Ma Y, Li L, Gallant RC, Elefteriou F, Yang X
(2012) Development 139: 601-11
MeSH Terms: Activating Transcription Factor 4, Animals, Bone Development, Cell Differentiation, Cells, Cultured, Chondrocytes, Collagen Type II, Female, Growth Plate, Hedgehog Proteins, Integrin-Binding Sialoprotein, Male, Mice, Mice, Transgenic, Osteoblasts, Osteocalcin, Osteogenesis
Show Abstract · Added November 14, 2013
Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4(-/-);Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteogenesis during development and bone remodeling postnatally. Atf4 overexpression in chondrocytes of the Atf4(-/-);Col2a1-Atf4 double mutants corrects the reduction in stature and limb in Atf4(-/-) embryos and rectifies the decrease in Ihh expression, Hh signaling, proliferation and accelerated hypertrophy that characterize the Atf4(-/-) developing growth plate cartilages. Unexpectedly, this genetic manipulation also restores the expression of osteoblastic marker genes, namely Ocn and bone sialoprotein, in Atf4(-/-) developing bones. In Atf4(-/-);Col2a1-Atf4 adult mice, all the defective bone parameters found in Atf4(-/-) mice, including bone volume, trabecular number and thickness, and bone formation rate, are rescued. In addition, the conditioned media of ex vivo cultures from wild-type or Atf4(-/-);Col2a1-Atf4, but not Atf4(-/-) cartilage, corrects the differentiation defects of Atf4(-/-) bone marrow stromal cells and Ihh-blocking antibody eliminates this effect. Together, these data indicate that Atf4 in chondrocytes is required for normal Ihh expression and for its paracrine effect on osteoblast differentiation. Therefore, the cell-autonomous role of Atf4 in chondrocytes dominates the role of Atf4 in osteoblasts during development for the control of early osteogenesis and skeletal growth.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Vascular endothelial cadherin modulates renal interstitial fibrosis.
Yamaguchi I, Tchao BN, Burger ML, Yamada M, Hyodo T, Giampietro C, Eddy AA
(2012) Nephron Exp Nephrol 120: e20-31
MeSH Terms: Animals, Antigens, Antigens, CD, Antigens, Differentiation, Myelomonocytic, Blotting, Western, Cadherins, Capillary Permeability, Collagen Type I, Collagen Type III, Disease Models, Animal, Fibronectins, Fibrosis, Gene Expression, Heterozygote, Immunohistochemistry, Kidney, Macrophages, Mice, Mice, Knockout, Myofibroblasts, Proteoglycans, Renal Circulation, Reverse Transcriptase Polymerase Chain Reaction, Time Factors, Ureteral Obstruction
Show Abstract · Added February 3, 2012
BACKGROUND/AIMS - Renal interstitial fibrosis is a final common pathway of all chronic, progressive kidney diseases. Peritubular capillary rarefaction is strongly correlated with fibrosis. The adherens junction protein vascular endothelial cadherin (VE-cadherin) is thought to play a critical role in vascular integrity. We hypothesized that VE-cadherin modulates the renal microcirculation during fibrogenesis and ultimately affects renal fibrosis.
METHODS - Unilateral ureteral obstruction (UUO) was used as a renal fibrosis model in VE-cadherin heterozygote (VE+/-) and wild-type (WT) mice, and the kidneys were harvested at days 3, 7, and 14. Peritubular capillary changes and fibrogenesis were investigated.
RESULTS - VE+/- mice had lower levels of VE-cadherin protein than WT mice at 3 and 7, but not 14 days after UUO. Vascular permeability was significantly greater in VE+/- mice 7 days after UUO, while peritubular capillary density was not significantly different in VE+/- and WT mice. Interstitial myofibroblast numbers and collagen I and III mRNA levels were significantly higher in VE+/- mice, consistent with a stronger early fibrogenic response. Expression of the pericyte marker neuron-glial antigen 2 was upregulated after UUO, but was not greater in VE+/- mice compared to the WT mice.
CONCLUSION - Our data suggest that VE-cadherin controls vascular permeability and limits fibrogenesis after UUO.
Copyright © 2011 S. Karger AG, Basel.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I.
Wang W, Nyman JS, Ono K, Stevenson DA, Yang X, Elefteriou F
(2011) Hum Mol Genet 20: 3910-24
MeSH Terms: Animals, Bone Diseases, Developmental, Bone Remodeling, Bone and Bones, Chondrocytes, Collagen Type II, Enzyme Activation, Extracellular Signal-Regulated MAP Kinases, Female, Intervertebral Disc, Lovastatin, Mice, Mice, Knockout, Neurofibromatosis 1, Neurofibromin 1, Osteoblasts, Osteocytes, Osteogenesis, Phenotype, Porosity, Promoter Regions, Genetic, Recombination, Genetic, Stem Cells, ras Proteins
Show Abstract · Added November 14, 2013
Mutations in NF1 cause neurofibromatosis type I (NF1), a disorder characterized, among other clinical manifestations, by generalized and focal bony lesions. Dystrophic scoliosis and tibial pseudoarthrosis are the most severe skeletal manifestations for which treatment is not satisfactory, emphasizing the dearth of knowledge related to the biology of NF1 in bone cells. Using reporter mice, we report here that the mouse Col2α1-Cre promoter (collagen, type II, alpha 1) is active not only in chondrocytes but also in adult bone marrow osteoprogenitors giving rise to osteoblasts. Based on this finding, we crossed the Col2α1-Cre transgenic and Nf1(flox/flox) mice to determine whether loss of Nf1 in axial and appendicular osteochondroprogenitors recapitulates the skeletal abnormalities of NF1 patients. By microtomographic and X-rays studies, we show that Nf1(Col2)(-/-) mice display progressive scoliosis and kyphosis, tibial bowing and abnormalities in skull and anterior chest wall formation. These defects were accompanied by a low bone mass phenotype, high bone cortical porosity, osteoidosis, increased osteoclastogenesis and decreased osteoblast number, as quantified by histomorphometry and 3D-microtomography. Loss of Nf1 in osteochondroprogenitors also caused severe short stature and intervertebral disc defects. Blockade of the RAS/ERK activation characteristic of Nf1(-/-) osteoprogenitors by lovastatin during embryonic development could attenuate the increased cortical porosity observed in mutant pups. These data and the skeletal similarities between this mouse model and NF1 patients thus suggest that activation of the RAS/ERK pathway by Nf1 loss-of-function in osteochondroprogenitors is responsible for the vertebral and tibia lesions in NF1 patients, and that this molecular signature may represent a good therapeutic target.
1 Communities
3 Members
0 Resources
24 MeSH Terms
The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis.
Melville DB, Montero-Balaguer M, Levic DS, Bradley K, Smith JR, Hatzopoulos AK, Knapik EW
(2011) Dis Model Mech 4: 763-76
MeSH Terms: Amino Acid Sequence, Animals, Base Sequence, Bone and Bones, Branchial Region, COP-Coated Vesicles, Cartilage, Chondrocytes, Collagen Type II, Craniofacial Abnormalities, Endoplasmic Reticulum, Endoplasmic Reticulum Stress, Extracellular Matrix Proteins, Gene Knockdown Techniques, Genetic Loci, Glycosaminoglycans, Melanosomes, Molecular Sequence Data, Morphogenesis, Mutation, Notochord, Protein Transport, Transcription Factors, Zebrafish, Zebrafish Proteins
Show Abstract · Added November 13, 2012
Craniofacial and skeletal dysmorphologies account for the majority of birth defects. A number of the disease phenotypes have been attributed to abnormal synthesis, maintenance and composition of extracellular matrix (ECM), yet the molecular and cellular mechanisms causing these ECM defects remain poorly understood. The zebrafish feelgood mutant manifests a severely malformed head skeleton and shortened body length due to defects in the maturation stage of chondrocyte development. In vivo analyses reveal a backlog of type II and type IV collagens in rough endoplasmic reticulum (ER) similar to those found in coat protein II complex (COPII)-deficient cells. The feelgood mutation hinders collagen deposition in the ECM, but trafficking of small cargos and other large ECM proteins such as laminin to the extracellular space is unaffected. We demonstrate that the zebrafish feelgood mutation causes a single amino acid substitution within the DNA-binding domain of transcription factor Creb3l2. We show that Creb3l2 selectively regulates the expression of genes encoding distinct COPII proteins (sec23a, sec23b and sec24d) but find no evidence for its regulation of sec24c expression. Moreover, we did not detect activation of ER stress response genes despite intracellular accumulation of collagen and prominent skeletal defects. Promoter trans-activation assays show that the Creb3l2 feelgood variant is a hypomorphic allele that retains approximately 50% of its transcriptional activity. Transgenic rescue experiments of the feelgood phenotype restore craniofacial development, illustrating that a precise level of Creb3l2 transcriptional activity is essential for skeletogenesis. Our results indicate that Creb3l2 modulates the availability of COPII machinery in a tissue- and cargo-specific manner. These findings could lead to a better understanding of the etiology of human craniofacial and skeletal birth defects as well as adult-onset diseases that are linked to dysregulated ECM deposition, such as arthritis, fibrosis or osteoporosis.
2 Communities
3 Members
0 Resources
25 MeSH Terms