Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 8 of 8

Publication Record

Connections

Loss of Serotonin Transporter Function Alters ADP-mediated Glycoprotein αIIbβ3 Activation through Dysregulation of the 5-HT2A Receptor.
Oliver KH, Duvernay MT, Hamm HE, Carneiro AM
(2016) J Biol Chem 291: 20210-9
MeSH Terms: Adenosine Diphosphate, Animals, Blood Platelets, Citalopram, Female, Male, Mice, Mice, Knockout, Platelet Glycoprotein GPIIb-IIIa Complex, Receptor, Serotonin, 5-HT2A, Serotonin Plasma Membrane Transport Proteins
Show Abstract · Added October 26, 2016
Reduced platelet aggregation and a mild bleeding phenotype have been observed in patients chronically taking selective serotonin reuptake inhibitors (SSRIs). However, it remains unclear how SSRIs, which inhibit the plasma membrane serotonin transporter (SERT), modulate hemostasis. Here, we examine how sustained inhibition of SERT activity alters serotonergic signaling and influences platelet activation and hemostasis. Pharmaceutical blockade (citalopram dosing) or genetic ablation (SERT(-/-)) of SERT function in vivo led to reduced serotonin (5-hydroxytryptamine (5-HT)) blood levels that paralleled a mild bleeding phenotype in mice. Transfusion of wild-type platelets to SERT(-/-) mice normalized bleeding times to wild-type levels, suggesting that loss of SERTs causes a deficiency in platelet activation. Although SERT(-/-) platelets displayed no difference in P-selectin or αIIbβ3 activation upon stimulation with thrombin, ADP-mediated αIIbβ3 activation is reduced in SERT(-/-) platelets. Additionally, synergistic potentiation of αIIbβ3 activation by ADP and 5-HT is lost in SERT(-/-) platelets. Acute treatment of wild-type platelets with 5-HT2A receptor (5-HT2AR) antagonists or SSRIs revealed that functional 5-HT2ARs, not SERTs, are necessary for the synergistic activation of αIIbβ3 by dual 5-HT/ADP stimulation. Pharmacological studies using radiolabeled guanosine 5'-3-O-([(35)S]thio)triphosphate and [(3)H]ketanserin revealed that platelets isolated from SERT(-/-) or citalopram-treated mice have reduced activation of G-proteins coupled to 5-HT2ARs and receptor surface expression. Taken together, these data demonstrate that sustained SERT loss of function reduces 5-HT2AR surface expression that is critical for the synergistic activation of αIIbβ3 by 5-HT and ADP. These results highlight an antiplatelet strategy centered on blocking or desensitizing 5-HT2AR to attenuate ADP-mediated αIIbβ3 activation.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
2 Members
0 Resources
11 MeSH Terms
Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain.
Whyte A, Jessen T, Varney S, Carneiro AM
(2014) Neurochem Int 73: 122-6
MeSH Terms: Animals, Brain Chemistry, Citalopram, Integrin beta3, Mice, Mice, Knockout, Serotonin, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors, Synapses, Synaptosomes
Show Abstract · Added February 12, 2015
Dysfunctions in serotonin (5-hydroxytryptamine, 5-HT) systems have been associated with several psychiatric illnesses, including anxiety, depression, obsessive-compulsive disorders and autism spectrum disorders. Convergent evidence from genetic analyses of human subjects has implicated the integrin β3 subunit gene (ITGB3) as a modulator of serotonergic systems via genetic interactions with the 5-HT transporter gene (SLC6A4, SERT). While genetic interactions may result from contributions of each gene at several levels, we hypothesize that ITGB3 modulates the 5-HT system at the level of the synapse, through the actions of integrin αvβ3. Here we utilized a genetic approach in mouse models to examine Itgb3 contributions to SERT function both in the context of normal and reduced SERT expression. As integrin αvβ3 is expressed in postsynaptic membranes, we isolated synaptoneurosomes, which maintain intact pre- and post-synaptic associations. Citalopram binding revealed significant Slc6a4-driven reductions in SERT expression in midbrain synapses, whereas no significant changes were observed in hippocampal or cortical projections. Expecting corresponding changes to SERT function, we also measured 5-HT uptake activity in synaptoneurosomal preparations. Itgb3 single heterozygous mice displayed significant reductions in 5-HT Vmax, with no changes in Km, in midbrain preparations. However, in the presence of both Itgb3 and Slc6a4 heterozygozity, 5-HT uptake was similar to wild-type levels, revealing a significant Slc6a4 by Itgb3 genetic interaction in the midbrain. Similar findings were observed in cortical preparations, whereas in the hippocampus, most Vmax changes were driven solely by Slc6a4. Our findings provide evidence that integrin αvβ3 is involved in the regulation of serotonergic systems in some, but not all 5-HT synapses, revealing novel contributions to synaptic specificity within the central nervous system.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Y95 and E444 interaction required for high-affinity S-citalopram binding in the human serotonin transporter.
Combs S, Kaufmann K, Field JR, Blakely RD, Meiler J
(2011) ACS Chem Neurosci 2: 75-81
MeSH Terms: Animals, Antidepressive Agents, Citalopram, Crystallography, X-Ray, Humans, Protein Binding, Serotonin Plasma Membrane Transport Proteins, Stereoisomerism
Show Abstract · Added July 10, 2013
The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) is responsible for the reuptake of 5-HT following synaptic release, as well as for import of the biogenic amine into several non-5-HT synthesizing cells including platelets. The antidepressant citalopram blocks SERT and thereby inhibits the transport of 5-HT. To identify key residues establishing high-affinity citalopram binding, we have built a comparative model of hSERT and Drosophila melanogaster SERT (dSERT) based on the Aquifex aeolicus leucine transporter (LeuT(Aa)) crystal structure. In this study, citalopram has been docked into the homology model of hSERT and dSERT using RosettaLigand. Our models reproduce the differential binding affinities for the R- and S-isomers of citalopram in hSERT and the impact of several hSERT mutants. Species-selective binding affinities for hSERT and dSERT also can be reproduced. Interestingly, the model predicts a hydrogen bond between E444 in transmembrane domain 8 (TM8) and Y95 in TM1 that places Y95 in a downward position, thereby removing Y95 from a direct interaction with S-citalopram. Mutation of E444D results in a 10-fold reduced binding affinity for S-citalopram, supporting the hypothesis that Y95 and E444 form a stabilizing interaction in the S-citalopram/hSERT complex.
2 Communities
2 Members
0 Resources
8 MeSH Terms
The SSRI citalopram affects fetal thalamic axon responsiveness to netrin-1 in vitro independently of SERT antagonism.
Bonnin A, Zhang L, Blakely RD, Levitt P
(2012) Neuropsychopharmacology 37: 1879-84
MeSH Terms: Animals, Axons, Citalopram, Coculture Techniques, Female, Fetus, Male, Mice, Mice, Inbred C57BL, Mice, Inbred ICR, Mice, Transgenic, Nerve Growth Factors, Netrin-1, Paroxetine, Receptors, sigma, Serotonin, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors, Thalamus, Tumor Suppressor Proteins
Show Abstract · Added July 10, 2013
Serotonin (5-hydroxytryptamine, 5-HT) signaling is thought to modulate nervous system development. Genetic and pharmacological studies support the idea that altered 5-HT signaling during development can have enduring consequences on brain function and behavior. Recently, we discovered that 5-HT can modulate thalamic axon guidance in vitro and in vivo. Embryonic thalamic axons transiently express the 5-HT transporter (SERT; Slc6a4) and accumulate 5-HT, suggesting that the SERT activity of these axons may regulate 5-HT-modulated guidance cues. We tested whether pharmacologically blocking SERT using selective 5-HT reuptake inhibitors (SSRIs) would impact the action of 5-HT on thalamic axon responses to netrin-1 in vitro. Surprisingly, we observed that two high-affinity SSRIs, racemic citalopram ((RS)-CIT) and paroxetine, affect the outgrowth of embryonic thalamic axons, but differ with respect to their dependence on SERT blockade. Using a recently developed 'citalopram insensitive' transgenic mouse line and in vitro pharmacology, we show that the effect of (RS)-CIT effect is SERT independent, but rather arises from R-CIT activation of the orphan sigma-1 receptor(σ1, Oprs1). Our results reveal a novel σ1 activity in modulating axon guidance and a 5-HT independent action of a widely prescribed SSRI. By extension, (RS)-CIT and possibly other structurally similar SSRIs may have other off-target actions that can impact neural development and contribute to therapeutic efficacy or side effects.
2 Communities
1 Members
0 Resources
20 MeSH Terms
Portal infusion of escitalopram enhances hepatic glucose disposal in conscious dogs.
An Z, Moore MC, Winnick JJ, Farmer B, Neal DW, Lautz M, Smith M, Rodewald T, Cherrington AD
(2009) Eur J Pharmacol 607: 251-7
MeSH Terms: Animals, Antidepressive Agents, Second-Generation, Carbon, Citalopram, Diabetes Mellitus, Type 2, Dogs, Glucose, Glucose Clamp Technique, Glycogen, Hyperinsulinism, Infusions, Intravenous, Liver, Portal Vein, Somatostatin, Time Factors
Show Abstract · Added June 2, 2014
To examine whether escitalopram enhances net hepatic glucose uptake during a hyperinsulinemic hyperglycemic clamp, studies were performed in conscious 42-h-fasted dogs. The experimental period was divided into P1 (0-90 min) and P2 (90-270 min). During P1 and P2 somatostatin (to inhibit insulin and glucagon secretion), 4x basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (2x hepatic glucose load) were infused. Saline was infused intraportally during P1 in all groups. In one group saline infusion was continued in P2 (SAL, n = 11), while escitalopram was infused intraportally at 2 microg/kg/min (L-ESC, n = 6) or 8 microg/kg/min (H-ESC, n = 7) during P2 in two other groups. The arterial insulin concentrations rose approximately four fold (to 123 +/- 8, 146 +/- 13 and 148 +/- 15 pmol/L) while glucagon concentrations remained basal (41 +/- 3, 44 +/- 9 and 40 +/- 3 ng/L) in all groups. The hepatic glucose load averaged 216 +/- 13, 223 +/- 19 and 202 +/- 12 micromol/kg/min during the entire experimental period (P1 and P2) in the SAL, L-ESC and H-ESC groups, respectively. Net hepatic glucose uptake was 11.6 +/- 1.4, 10.1 +/- 0.9 and 10.4 +/- 2.3 micromol/kg/min in P1 and averaged 16.9 +/- 1.5, 15.7 +/- 1.3 and 22.6 +/- 3.7 (P < 0.05) in the SAL, L-ESC and H-ESC groups, respectively during the last hour of P2 (210-270 min). Net hepatic carbon retention (glycogen storage) was 15.4 +/- 1.3, 14.9 +/- 0.6 and 20.9 +/- 2.6 (P < 0.05) micromol/kg/min in SAL, L-ESC and H-ESC respectively during the last hour of P2. Escitalopram enhanced net hepatic glucose uptake and hepatic glycogen deposition, showing that it can improve hepatic glucose clearance under hyperinsulinemic hyperglycemic conditions. Its use in individuals with diabetes may, therefore, result in improved glycemic control.
0 Communities
4 Members
0 Resources
15 MeSH Terms
Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants.
Henry LK, Field JR, Adkins EM, Parnas ML, Vaughan RA, Zou MF, Newman AH, Blakely RD
(2006) J Biol Chem 281: 2012-23
MeSH Terms: Adrenergic Uptake Inhibitors, Amino Acid Sequence, Animals, Antidepressive Agents, Binding Sites, Binding, Competitive, Blotting, Western, Cadmium, Cell Line, Cell Membrane, Citalopram, Clomipramine, Cocaine, Cysteine, Dopamine Uptake Inhibitors, Fluoxetine, HeLa Cells, Humans, Immunoprecipitation, Isoleucine, Kinetics, LLC-PK1 Cells, Mazindol, Methionine, Mice, Models, Chemical, Molecular Sequence Data, Mutation, N-Methyl-3,4-methylenedioxyamphetamine, Nomifensine, Protein Binding, Protein Structure, Tertiary, Protein Transport, Radiopharmaceuticals, Receptors, Serotonin, Serotonin, Serotonin Uptake Inhibitors, Species Specificity, Stereoisomerism, Substrate Specificity, Tyrosine
Show Abstract · Added July 10, 2013
In previous studies examining the structural determinants of antidepressant and substrate recognition by serotonin transporters (SERTs), we identified Tyr-95 in transmembrane segment 1 (TM1) of human SERT as a major determinant of binding for several antagonists, including racemic citalopram ((RS)-CIT). Here we described a separate site in hSERT TM3 (Ile-172) that impacts (RS)-CIT recognition when switched to the corresponding Drosophila SERT residue (I172M). The hSERT I172M mutant displays a marked loss of inhibitor potency for multiple inhibitors such as (RS)-CIT, clomipramine, RTI-55, fluoxetine, cocaine, nisoxetine, mazindol, and nomifensine, whereas recognition of substrates, including serotonin and 3,4-methylenedioxymethamphetamine, is unaffected. Selectivity for antagonist interactions is evident with this substitution because the potencies of the antidepressants tianeptine and paroxetine are unchanged. Reduced cocaine analog recognition was verified in photoaffinity labeling studies using [(125)I]MFZ 2-24. In contrast to the I172M substitution, other substitutions at this position significantly affected substrate recognition and/or transport activity. Additionally, the mouse mutation (mSERT I172M) exhibits similar selective changes in inhibitor potency. Unlike hSERT or mSERT, analogous substitutions in mouse dopamine transporter (V152M) or human norepinephrine transporter (V148M) result in transporters that bind substrate but are deficient in the subsequent translocation of the substrate. A double mutant hSERT Y95F/I172M had a synergistic impact on (RS)-CIT recognition ( approximately 10,000-fold decrease in (RS)-CIT potency) in the context of normal serotonin recognition. The less active enantiomer (R)-CIT responded to the I172M substitution like (S)-CIT but was relatively insensitive to the Y95F substitution and did not display a synergistic loss at Y95F/I172M. An hSERT mutant with single cysteine substitutions in TM1 and TM3 resulted in formation of a high affinity cadmium metal coordination site, suggesting proximity of these domains in the tertiary structure of SERT. These studies provided evidence for distinct binding sites coordinating SERT antagonists and revealed a close interaction between TM1 and TM3 differentially targeted by stereoisomers of CIT.
2 Communities
1 Members
0 Resources
41 MeSH Terms
5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors.
Serafeim A, Grafton G, Chamba A, Gregory CD, Blakely RD, Bowery NG, Barnes NM, Gordon J
(2002) Blood 99: 2545-53
MeSH Terms: Apoptosis, Biopsy, Blotting, Western, Burkitt Lymphoma, Carrier Proteins, Caspases, Cell Survival, Citalopram, DNA Damage, DNA, Neoplasm, Fluoxetine, Humans, Membrane Glycoproteins, Membrane Transport Proteins, Nerve Tissue Proteins, Paroxetine, Serotonin, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors, Tumor Cells, Cultured
Show Abstract · Added July 10, 2013
Serotonin (5-HT), a well-known neurotransmitter of the central nervous system, has been implicated in diverse aspects of immune regulation. Here we show that 5-HT can efficiently drive programmed cell death in established Burkitt lymphoma (BL) lines that remain faithful to the original biopsy phenotype (group 1). Group 1 BL cells cultured in the presence of 5-HT exhibited marked suppression of DNA synthesis that was accompanied by extensive apoptosis-serotonin-driven apoptosis was complete within 24 hours, was preceded by early caspase activation, and was accompanied by a decline in mitochondrial membrane potential. BL cells that had drifted to a lymphoblastic group 3 phenotype were relatively resistant to these actions of serotonin, and the forced ectopic expression of either bcl-2 or bcl-x(L) provided substantial protection from 5-HT-induced apoptosis. 5-HT receptor antagonists (SDZ205-557, granisetron, methysergide) failed to inhibit serotonin-induced apoptosis, whereas the selective serotonin reuptake inhibitors (SSRI)-fluoxetine (Prozac), paroxetine (Paxil), and citalopram (Celexa)-substantially blocked the monoamine actions. Western blot analysis showed that BL cells expressed protein for the 5-HT transporter, and transport assays confirmed active uptake of serotonin by the cells. Unlike what was suggested for neuronal cells, there was no evidence that intracellular oxidative metabolites were responsible for the 5-HT-induced programmed death of BL cells. These data indicate that serotonin drives apoptosis in biopsylike BL cells after its entry through an active transport mechanism, and they suggest a novel therapeutic modality for Burkitt lymphoma.
1 Communities
1 Members
0 Resources
20 MeSH Terms
High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol.
Barker EL, Perlman MA, Adkins EM, Houlihan WJ, Pristupa ZB, Niznik HB, Blakely RD
(1998) J Biol Chem 273: 19459-68
MeSH Terms: Animals, Binding Sites, Binding, Competitive, Biological Transport, Carrier Proteins, Citalopram, Drosophila, Drosophila Proteins, HeLa Cells, Humans, Mazindol, Membrane Glycoproteins, Membrane Proteins, Membrane Transport Proteins, Models, Molecular, Molecular Structure, Mutagenesis, Site-Directed, Nerve Tissue Proteins, Recombinant Fusion Proteins, Serotonin, Serotonin Antagonists, Serotonin Plasma Membrane Transport Proteins, Transfection
Show Abstract · Added July 10, 2013
Human and Drosophila melanogaster serotonin (5-HT) transporters (SERTs) exhibit similar 5-HT transport kinetics and can be distinguished pharmacologically by many, but not all, biogenic amine transporter antagonists. By using human and Drosophila SERT chimeras, major determinants of potencies of two transporter antagonists, mazindol and citalopram, were tracked to the amino-terminal domains encompassing transmembrane domains I and II. Species-scanning mutagenesis, whereby amino acid substitutions are made switching residues from one species to another, was employed on the eight amino acids that differ between human and Drosophila SERTs in this region, and antagonist potencies were reassessed in 5-HT uptake assays. A single mutation in transmembrane domain I of human SERT, Y95F, shifted both citalopram and mazindol to Drosophila SERT-like potencies. Strikingly, these potency changes were in opposite directions suggesting Tyr95 contributes both positive and negative determinants of antagonist potency. To gain insight into how the Y95F mutant might influence mazindol potency, we determined how structural variants of mazindol responded to the mutation. Our studies demonstrate the importance of the hydroxyl group on the heterocyclic nucleus of mazindol for maintaining species-selective recognition of mazindol and suggest that transmembrane domain I participates in the formation of antagonist-binding sites for amine transporters.
1 Communities
1 Members
0 Resources
23 MeSH Terms