Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 121

Publication Record

Connections

CRISPR/Cas9 engineering of a KIM-1 reporter human proximal tubule cell line.
Veach RA, Wilson MH
(2018) PLoS One 13: e0204487
MeSH Terms: Acute Kidney Injury, CRISPR-Cas Systems, Cell Line, Cisplatin, Gene Knock-In Techniques, Gene Targeting, Genes, Reporter, Genetic Engineering, Glucose, Green Fluorescent Proteins, Hepatitis A Virus Cellular Receptor 1, Homologous Recombination, Humans, Kidney Tubules, Proximal, Luciferases, Up-Regulation
Show Abstract · Added December 13, 2018
We used the CRISPR/Cas9 system to knock-in reporter transgenes at the kidney injury molecule-1 (KIM-1) locus and isolated human proximal tubule cell (HK-2) clones. PCR verified targeted knock-in of the luciferase and eGFP reporter at the KIM-1 locus. HK-2-KIM-1 reporter cells responded to various stimuli including hypoxia, cisplatin, and high glucose, indicative of upregulation of KIM-1 expression. We attempted using CRISPR/Cas9 to also engineer the KIM-1 reporter in telomerase-immortalized human RPTEC cells. However, these cells demonstrated an inability to undergo homologous recombination at the target locus. KIM-1-reporter human proximal tubular cells could be valuable tools in drug discovery for molecules inhibiting kidney injury. Additionally, our gene targeting strategy could be used in other cell lines to evaluate the biology of KIM-1 in vitro or in vivo.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer.
Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB, Platinum Study Group
(2017) Clin Cancer Res 23: 5757-5768
MeSH Terms: Adolescent, Adult, Age Factors, Age of Onset, Aged, Cancer Survivors, Cell Cycle Proteins, Cisplatin, Gene Expression Regulation, Neoplastic, Genome-Wide Association Study, Genotype, Humans, Hypertension, Male, Middle Aged, Neoplasm Proteins, Peripheral Nervous System Diseases, Polymorphism, Single Nucleotide, Risk Factors, Testicular Neoplasms
Show Abstract · Added October 27, 2017
Our purpose was to characterize the clinical influences, genetic risk factors, and gene mechanisms contributing to persistent cisplatin-induced peripheral neuropathy (CisIPN) in testicular cancer survivors (TCSs). TCS given cisplatin-based therapy completed the validated EORTC QLQ-CIPN20 questionnaire. An ordinal CisIPN phenotype was derived, and associations with age, smoking, excess drinking, hypertension, body mass index, diabetes, hypercholesterolemia, cumulative cisplatin dose, and self-reported health were examined for 680 TCS. Genotyping was performed on the Illumina HumanOmniExpressExome chip. Following quality control and imputation, 5.1 million SNPs in 680 genetically European TCS formed the input set. GWAS and PrediXcan were used to identify genetic variation and genetically determined gene expression traits, respectively, contributing to CisIPN. We evaluated two independent datasets for replication: Vanderbilt's electronic health database (BioVU) and the CALGB 90401 trial. Eight sensory items formed a subscale with good internal consistency (Cronbach α = 0.88). Variables significantly associated with CisIPN included age at diagnosis (OR per year, 1.06; = 2 × 10), smoking (OR, 1.54; = 0.004), excess drinking (OR, 1.83; = 0.007), and hypertension (OR, 1.61; = 0.03). CisIPN was correlated with lower self-reported health (OR, 0.56; = 2.6 × 10) and weight gain adjusted for years since treatment (OR per Δkg/m, 1.05; = 0.004). PrediXcan identified lower expressions of and and higher expression as associated with CisIPN ( value for each < 5 × 10) with replication of meeting significance criteria (Fisher combined = 0.0089). CisIPN is associated with age, modifiable risk factors, and genetically determined expression level of Further study of implicated genes could elucidate the pathophysiologic underpinnings of CisIPN. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
20 MeSH Terms
IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling.
Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, Dicker AP, Lu B
(2017) Mol Cancer Res 15: 896-904
MeSH Terms: Animals, Apoptosis, Biomarkers, Tumor, Carcinogenesis, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Cell Proliferation, Cisplatin, Drug Resistance, Neoplasm, Gene Expression Regulation, Neoplastic, Humans, Insulin-Like Growth Factor Binding Protein 3, Insulin-Like Growth Factor I, Mice, Mice, Knockout, Proto-Oncogene Proteins p21(ras)
Show Abstract · Added April 18, 2017
Insulin-like growth factor binding protein 3 (IGFBP3) modulates cell growth through IGF-dependent and -independent mechanisms. Reports suggest that the serum levels of IGFBP3 are associated with various cancers and that IGFBP3 expression is significantly decreased in cisplatin (CDDP)-resistant lung cancer cells. Based on these findings, we investigated whether deficiency accelerates mouse lung tumorigenesis and if expression of IGFBP3 enhances CDDP response by focusing on the IGF1 signaling cascade. To this end, an -null mouse model was generated in combination with to compare the tumor burden. Then, IGF-dependent signaling was assessed after expressing wild-type or a mutant IGFBP3 without IGF binding capacity in non-small cell lung cancer (NSCLC) cells. Finally, the treatment response to CDDP chemotherapy was evaluated under conditions of IGFBP3 overexpression. -null mice had increased lung tumor burden (>2-fold) and only half of human lung cancer cells survived after expression of IGFBP3, which corresponded to increased cleaved caspase-3 (10-fold), inactivation of IGF1 and MAPK signaling. In addition, overexpression of IGFBP3 increased susceptibility to CDDP treatment in lung cancer cells. These results, for the first time, demonstrate that IGFBP3 mediates lung cancer progression in a mouse model. Furthermore, overexpression of IGFBP3 induced apoptosis and enhanced cisplatin response and confirmed that the suppression is in part by blocking IGF1 signaling. These findings reveal that IGFBP3 is effective in lung cancer cells with high IGF1 signaling activity and imply that relevant biomarkers are essential in selecting lung cancer patients for IGF1-targeted therapy. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
16 MeSH Terms
A Randomized Phase II Neoadjuvant Study of Cisplatin, Paclitaxel With or Without Everolimus in Patients with Stage II/III Triple-Negative Breast Cancer (TNBC): Responses and Long-term Outcome Correlated with Increased Frequency of DNA Damage Response Gene Mutations, TNBC Subtype, AR Status, and Ki67.
Jovanović B, Mayer IA, Mayer EL, Abramson VG, Bardia A, Sanders ME, Kuba MG, Estrada MV, Beeler JS, Shaver TM, Johnson KC, Sanchez V, Rosenbluth JM, Dillon PM, Forero-Torres A, Chang JC, Meszoely IM, Grau AM, Lehmann BD, Shyr Y, Sheng Q, Chen SC, Arteaga CL, Pietenpol JA
(2017) Clin Cancer Res 23: 4035-4045
MeSH Terms: Adult, Cisplatin, DNA Damage, Drug-Related Side Effects and Adverse Reactions, Everolimus, Female, High-Throughput Nucleotide Sequencing, Humans, Ki-67 Antigen, Lymphocytes, Tumor-Infiltrating, Middle Aged, Mutation, Neoplasm Staging, Paclitaxel, Receptors, Androgen, Treatment Outcome, Triple Negative Breast Neoplasms
Show Abstract · Added April 9, 2017
Because of inherent disease heterogeneity, targeted therapies have eluded triple-negative breast cancer (TNBC), and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine whether the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic antitumor effects in TNBC. Patients with stage II/III TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery. Tumor specimens were obtained at baseline, cycle 1, and surgery. Primary endpoint was pathologic complete response (pCR); secondary endpoints included clinical responses, breast conservation rate, safety, and discovery of molecular features associated with outcome. Between 2009 and 2013, 145 patients were accrued; 36% of patients in the everolimus arm and 49% of patients in the placebo arm achieved pCR; in each arm, 50% of patients achieved complete responses by imaging. Higher rates of neutropenia, mucositis, and transaminase elevation were seen with everolimus. Clinical response to therapy and long-term outcome correlated with increased frequency of DNA damage response (DDR) gene mutations, Basal-like1 and Mesenchymal TNBC-subtypes, AR-negative status, and high Ki67, but not with tumor-infiltrating lymphocytes. The paclitaxel/cisplatin combination was well tolerated and active, but addition of everolimus was associated with more adverse events without improvement in pCR or clinical response. However, discoveries made from correlative studies could lead to predictive TNBC biomarkers that may impact clinical decision-making and provide new avenues for mechanistic exploration that could lead to clinical utility. .
©2017 American Association for Cancer Research.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Current Management of Refractory Germ Cell Tumors and Future Directions.
Allen JC, Kirschner A, Scarpato KR, Morgans AK
(2017) Curr Oncol Rep 19: 8
MeSH Terms: Antineoplastic Combined Chemotherapy Protocols, Cisplatin, Disease Management, Hematopoietic Stem Cell Transplantation, Humans, Male, Neoplasms, Germ Cell and Embryonal
Show Abstract · Added April 2, 2019
PURPOSE OF REVIEW - We review current management strategies for patients with relapsed and refractory germ cell tumors (GCTs), defined as relapsed or persistent disease following at least one line of cisplatin-based chemotherapy. Additionally, we discuss future directions in the management of these patients.
RECENT FINDINGS - Recent studies involving targeted therapies have been disappointing. Nevertheless, studies of the management of refractory germ cell cancer are ongoing, with a focus on optimal utilization of high-dose chemotherapy and autologous stem cell transplant, as well as the role of immune checkpoint inhibitors in refractory germ cell tumors. Studies aiming to identify those patients who may benefit from more intensive treatment up front to prevent the development of refractory disease are also in progress. Testicular germ cell tumors are among the most curable of all solid tumor malignancies, with cure being possible even in the refractory, metastatic setting. Treatment of refractory disease remains a challenging clinical scenario, but potentially practice changing studies are ongoing.
0 Communities
1 Members
0 Resources
MeSH Terms
Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial.
Liang J, Bi N, Wu S, Chen M, Lv C, Zhao L, Shi A, Jiang W, Xu Y, Zhou Z, Wang W, Chen D, Hui Z, Lv J, Zhang H, Feng Q, Xiao Z, Wang X, Liu L, Zhang T, Du L, Chen W, Shyr Y, Yin W, Li J, He J, Wang L
(2017) Ann Oncol 28: 777-783
MeSH Terms: Adult, Aged, Antineoplastic Combined Chemotherapy Protocols, Carboplatin, Carcinoma, Non-Small-Cell Lung, Chemoradiotherapy, Cisplatin, Etoposide, Female, Humans, Kaplan-Meier Estimate, Lung Neoplasms, Male, Middle Aged, Neoplasm Staging, Paclitaxel, Proportional Hazards Models
Show Abstract · Added April 18, 2017
Background - The optimal chemotherapy regimen administered currently with radiation in patients with stage III non-small cell lung cancer (NSCLC) remains unclear. A multicenter phase III trial was conducted to compare the efficacy of concurrent thoracic radiation therapy with either etoposide/cisplatin (EP) or carboplatin/paclitaxel (PC) in patients with stage III NSCLC.
Patients and methods - Patients were randomly received 60-66 Gy of thoracic radiation therapy concurrent with either etoposide 50 mg/m2 on days 1-5 and cisplatin 50 mg/m2 on days 1 and 8 every 4 weeks for two cycles (EP arm), or paclitaxel 45 mg/m2 and carboplatin (AUC 2) on day 1 weekly (PC arm). The primary end point was overall survival (OS). The study was designed with 80% power to detect a 17% superiority in 3-year OS with a type I error rate of 0.05.
Results - A total of 200 patients were randomized and 191 patients were treated (95 in the EP arm and 96 in the PC arm). With a median follow-up time of 73 months, the 3-year OS was significantly higher in the EP arm than that of the PC arm. The estimated difference was 15.0% (95% CI 2.0%-28.0%) and P value of 0.024. Median survival times were 23.3 months in the EP arm and 20.7 months in the PC arm (log-rank test P = 0.095, HR 0.76, 95%CI 0.55-1.05). The incidence of Grade ≥2 radiation pneumonitis was higher in the PC arm (33.3% versus 18.9%, P = 0.036), while the incidence of Grade ≥3 esophagitis was higher in the EP arm (20.0% versus 6.3%, P = 0.009).
Conclusion - EP might be superior to weekly PC in terms of OS in the setting of concurrent chemoradiation for unresectable stage III NSCLC.
Trial registration ID - NCT01494558.
© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular Responses and Reveals Global Drug Mechanisms of Action.
Norris JL, Farrow MA, Gutierrez DB, Palmer LD, Muszynski N, Sherrod SD, Pino JC, Allen JL, Spraggins JM, Lubbock AL, Jordan A, Burns W, Poland JC, Romer C, Manier ML, Nei YW, Prentice BM, Rose KL, Hill S, Van de Plas R, Tsui T, Braman NM, Keller MR, Rutherford SA, Lobdell N, Lopez CF, Lacy DB, McLean JA, Wikswo JP, Skaar EP, Caprioli RM
(2017) J Proteome Res 16: 1364-1375
MeSH Terms: Apoptosis, Cell Line, Cell Survival, Cells, Cisplatin, Computational Biology, High-Throughput Screening Assays, Humans, Metabolic Networks and Pathways
Show Abstract · Added March 10, 2017
An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.
2 Communities
8 Members
0 Resources
9 MeSH Terms
Variants in and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity.
Wheeler HE, Gamazon ER, Frisina RD, Perez-Cervantes C, El Charif O, Mapes B, Fossa SD, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kollmannsberger C, Kim J, Mushiroda T, Kubo M, Ardeshir-Rouhani-Fard S, Einhorn LH, Cox NJ, Dolan ME, Travis LB
(2017) Clin Cancer Res 23: 3325-3333
MeSH Terms: Antineoplastic Agents, Cisplatin, Female, Genome-Wide Association Study, Genotype, Hearing Loss, Humans, Male, Membrane Proteins, Polymorphism, Single Nucleotide, Testicular Neoplasms
Show Abstract · Added April 13, 2017
Cisplatin is one of the most commonly used chemotherapy drugs worldwide and one of the most ototoxic. We sought to identify genetic variants that modulate cisplatin-associated ototoxicity (CAO). We performed a genome-wide association study (GWAS) of CAO using quantitative audiometry (4-12 kHz) in 511 testicular cancer survivors of European genetic ancestry. We performed polygenic modeling and functional analyses using a variety of publicly available databases. We used an electronic health record cohort to replicate our top mechanistic finding. One SNP, rs62283056, in the first intron of Mendelian deafness gene (wolframin ER transmembrane glycoprotein) and an expression quantitative trait locus (eQTL) for met genome-wide significance for association with CAO ( = 1.4 × 10). A significant interaction between cumulative cisplatin dose and rs62283056 genotype was evident, indicating that higher cisplatin doses exacerbate hearing loss in patients with the minor allele ( = 0.035). The association between decreased expression and hearing loss was replicated in an independent BioVU cohort ( = 18,620 patients, Bonferroni adjusted < 0.05). Beyond this top signal, we show CAO is a polygenic trait and that SNPs in and near 84 known Mendelian deafness genes are significantly enriched for low values in the GWAS ( = 0.048). We show for the first time the role of in CAO and document a statistically significant interaction between increasing cumulative cisplatin dose and rs62283056 genotype. Our clinical translational results demonstrate that pretherapy patient genotyping to minimize ototoxicity could be useful when deciding between cisplatin-based chemotherapy regimens of comparable efficacy with different cumulative doses. .
©2016 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Detection of Drug-Induced Acute Kidney Injury in Humans Using Urinary KIM-1, miR-21, -200c, and -423.
Pavkovic M, Robinson-Cohen C, Chua AS, Nicoara O, Cárdenas-González M, Bijol V, Ramachandran K, Hampson L, Pirmohamed M, Antoine DJ, Frendl G, Himmelfarb J, Waikar SS, Vaidya VS
(2016) Toxicol Sci 152: 205-13
MeSH Terms: Acetaminophen, Acute Kidney Injury, Adult, Biomarkers, Case-Control Studies, Cells, Cultured, Cisplatin, Cross-Sectional Studies, Dose-Response Relationship, Drug, Drug Overdose, Epithelial Cells, Female, Hepatitis A Virus Cellular Receptor 1, Humans, Kidney Tubules, Proximal, Longitudinal Studies, Male, MicroRNAs, Middle Aged, Predictive Value of Tests, Time Factors, Urinalysis, Young Adult
Show Abstract · Added September 19, 2017
Drug-induced acute kidney injury (AKI) is often encountered in hospitalized patients. Although serum creatinine (SCr) is still routinely used for assessing AKI, it is known to be insensitive and nonspecific. Therefore, our objective was to evaluate kidney injury molecule 1 (KIM-1) in conjunction with microRNA (miR)-21, -200c, and -423 as urinary biomarkers for drug-induced AKI in humans. In a cross-sectional cohort of patients (n = 135) with acetaminophen (APAP) overdose, all 4 biomarkers were significantly (P < .004) higher not only in APAP-overdosed (OD) patients with AKI (based on SCr increase) but also in APAP-OD patients without clinical diagnosis of AKI compared with healthy volunteers. In a longitudinal cohort of patients with malignant mesothelioma receiving intraoperative cisplatin (Cp) therapy (n = 108) the 4 biomarkers increased significantly (P < .0014) over time after Cp administration, but could not be used to distinguish patients with or without AKI. Evidence for human proximal tubular epithelial cells (HPTECs) being the source of miRNAs in urine was obtained first, by in situ hybridization based confirmation of increase in miR-21 expression in the kidney sections of AKI patients and second, by increased levels of miR-21, -200c, and -423 in the medium of cultured HPTECs treated with Cp and 4-aminophenol (APAP degradation product). Target prediction analysis revealed 1102 mRNA targets of miR-21, -200c, and -423 that are associated with pathways perturbed in diverse pathological kidney conditions. In summary, we report noninvasive detection of AKI in humans by combining the sensitivity of KIM-1 along with mechanistic potentials of miR-21, -200c, and -423.
© The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Bridging translation for acute kidney injury with better preclinical modeling of human disease.
Skrypnyk NI, Siskind LJ, Faubel S, de Caestecker MP
(2016) Am J Physiol Renal Physiol 310: F972-84
MeSH Terms: Acute Kidney Injury, Animals, Antineoplastic Agents, Cardiac Surgical Procedures, Cisplatin, Contrast Media, Disease Models, Animal, Humans, Sepsis, Translational Medical Research
Show Abstract · Added October 23, 2018
The current lack of effective therapeutics for patients with acute kidney injury (AKI) represents an important and unmet medical need. Given the importance of the clinical problem, it is time for us to take a few steps back and reexamine current practices. The focus of this review is to explore the extent to which failure of therapeutic translation from animal studies to human studies stems from deficiencies in the preclinical models of AKI. We will evaluate whether the preclinical models of AKI that are commonly used recapitulate the known pathophysiologies of AKI that are being modeled in humans, focusing on four common scenarios that are studied in clinical therapeutic intervention trials: cardiac surgery-induced AKI; contrast-induced AKI; cisplatin-induced AKI; and sepsis associated AKI. Based on our observations, we have identified a number of common limitations in current preclinical modeling of AKI that could be addressed. In the long term, we suggest that progress in developing better preclinical models of AKI will depend on developing a better understanding of human AKI. To this this end, we suggest that there is a need to develop greater in-depth molecular analyses of kidney biopsy tissues coupled with improved clinical and molecular classification of patients with AKI.
0 Communities
1 Members
0 Resources
MeSH Terms