Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 118

Publication Record

Connections

Functional and structural similarity of human DNA primase [4Fe4S] cluster domain constructs.
Holt ME, Salay LE, O'Brien E, Barton JK, Chazin WJ
(2018) PLoS One 13: e0209345
MeSH Terms: Binding Sites, Circular Dichroism, Crystallography, X-Ray, DNA, DNA Primase, Molecular Docking Simulation, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Protein Binding, Protein Domains, Protein Structure, Secondary, RNA
Show Abstract · Added March 26, 2019
The regulatory subunit of human DNA primase has a C-terminal domain (p58C) that contains a [4Fe4S] cluster and binds DNA. Previous electrochemical analysis of a p58C construct revealed that its affinity for DNA is sensitive to the redox state of the [4Fe4S] cluster. Concerns about the validity of this conclusion have been raised, based in part on differences in X-ray crystal structures of the p58C272-464 construct used for that study and that of a N-terminally shifted p58C266-456 construct and consequently, an assumption that p58C272-464 has abnormal physical and functional properties. To address this controversy, a new p58C266-464 construct containing all residues was crystallized under the conditions previously used for crystallizing p58C272-464, and the solution structures of both constructs were assessed using circular dichroism and NMR spectroscopy. In the new crystal structure, p58C266-464 exhibits the same elements of secondary structure near the DNA binding site as observed in the crystal structure of p58C272-464. Moreover, in solution, circular dichroism and 15N,1H-heteronuclear single quantum coherence (HSQC) NMR spectra show there are no significant differences in the distribution of secondary structures or in the tertiary structure or the two constructs. To validate that the two constructs have the same functional properties, binding of a primed DNA template was measured using a fluorescence-based DNA binding assay, and the affinities for this substrate were the same (3.4 ± 0.5 μM and 2.7 ± 0.3 μM, respectively). The electrochemical properties of p58C266-464 were also measured and this p58C construct was able to engage in redox switching on DNA with the same efficiency as p58C272-464. Together, these results show that although p58C can be stabilized in different conformations in the crystalline state, in solution there is effectively no difference in the structure and functional properties of p58C constructs of different lengths.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Absolute configuration of an axially chiral sulfonate determined from its optical rotatory dispersion, electronic circular dichroism, and vibrational circular dichroism spectra.
Covington CL, Raghavan V, Smuts JP, Armstrong DW, Polavarapu PL
(2017) Chirality 29: 670-676
MeSH Terms: Circular Dichroism, Models, Molecular, Molecular Conformation, Naphthalenes, Optical Rotatory Dispersion, Stereoisomerism, Sulfonic Acids, Vibration
Show Abstract · Added April 10, 2018
The absolute configuration (AC) of an axially chiral sulfonate (aCSO), 3,5-dimethyl-2-(naphthalen-1-yl)-6-(naphthalen-1-yl)benzenesulfonate (labeled as aCSO5), was investigated using optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) spectroscopies. All three methods led to the same conclusion and the AC of aCSO5 is reliably determined to be (-)-(aR, aR), or conversely (+)-(aS, aS).
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
8 MeSH Terms
To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.
Polavarapu PL, Covington CL, Raghavan V
(2017) Chemphyschem 18: 2459-2465
MeSH Terms: Alcohols, Alkynes, Circular Dichroism, Furans, Ketones, Lactones, Molecular Structure, Quantum Theory, Sesquiterpenes, Spectrum Analysis, Raman
Show Abstract · Added April 10, 2018
A chemical structure (CS) identifies the connectivities between atoms, and the nature of those connections, for a given elemental composition. For chiral molecules, in addition to the identification of CS, the identification of the correct absolute configuration (AC) is also needed. Several chiral natural products are known whose CSs were initially misidentified and later corrected, and these errors were often discovered during the total synthesis of natural products. In this work, we present a new and convenient approach that can be used with Raman optical activity (ROA) and vibrational circular dichroism (VCD) spectroscopies, to distinguish between the correct and incorrect CSs of chiral compounds. This approach involves analyzing the spectral similarity overlap between experimental spectra and those predicted with advanced quantum chemical theories. Significant labor needed for establishing the correct CSs via chemical syntheses of chiral natural products can thus be avoided.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
1 Members
0 Resources
MeSH Terms
Prp40 Homolog A Is a Novel Centrin Target.
Díaz Casas A, Chazin WJ, Pastrana-Ríos B
(2017) Biophys J 112: 2529-2539
MeSH Terms: Binding Sites, Calorimetry, Carrier Proteins, Chlamydomonas reinhardtii, Circular Dichroism, Humans, Hydrophobic and Hydrophilic Interactions, Protein Unfolding, Recombinant Proteins, Sequence Homology, Amino Acid, Spectroscopy, Fourier Transform Infrared, Thermodynamics, Trimethoprim, Sulfamethoxazole Drug Combination, Two-Hybrid System Techniques
Show Abstract · Added March 24, 2018
Pre-mRNA processing protein 40 (Prp40) is a nuclear protein that has a role in pre-mRNA splicing. Prp40 possesses two leucine-rich nuclear export signals, but little is known about the function of Prp40 in the export process. Another protein that has a role in protein export is centrin, a member of the EF-hand superfamily of Ca-binding proteins. Prp40 was found to be a centrin target by yeast-two-hybrid screening using both Homo sapiens centrin 2 (Hscen2) and Chlamydomonas reinhardtii centrin (Crcen). We identified a centrin-binding site within H. sapiens Prp40 homolog A (HsPrp40A), which contains a hydrophobic triad WLL that is known to be important in the interaction with centrin. This centrin-binding site is highly conserved within the first nuclear export signal consensus sequence identified in Saccharomyces cerevisiae Prp40. Here, we examine the interaction of HsPrp40A peptide (HsPrp40Ap) with both Hscen2 and Crcen by isothermal titration calorimetry. We employed the thermodynamic parameterization to estimate the polar and apolar surface area of the interface. In addition, we have defined the molecular mechanism of thermally induced unfolding and dissociation of the Crcen-HsPrp40Ap complex using two-dimensional infrared correlation spectroscopy. These complementary techniques showed for the first time, to our knowledge, that HsPrp40Ap interacts with centrin in vitro, supporting a coupled functional role for these proteins in pre-mRNA splicing.
Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia.
Wang C, Pallan PS, Zhang W, Lei L, Yoshimoto FK, Waterman MR, Egli M, Guengerich FP
(2017) J Biol Chem 292: 10767-10778
MeSH Terms: Adrenal Hyperplasia, Congenital, Circular Dichroism, Cytochromes b5, Deuterium Exchange Measurement, Enzyme Stability, Hot Temperature, Humans, Mutation, Protein Domains, Spectrophotometry, Ultraviolet, Steroid 21-Hydroxylase
Show Abstract · Added March 14, 2018
Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12 variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants () for four variants were 37-13,000-fold higher than for WT P450 21A2. Cytochrome , which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21--progesterone, indicating that C-H bond breaking is a rate-limiting step over a 10-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Atropoisomerism in Biflavones: The Absolute Configuration of (-)-Agathisflavone via Chiroptical Spectroscopy.
Covington CL, Junior FM, Silva JH, Kuster RM, de Amorim MB, Polavarapu PL
(2016) J Nat Prod 79: 2530-2537
MeSH Terms: Biflavonoids, Circular Dichroism, Molecular Conformation, Molecular Structure, Optical Rotatory Dispersion, Stereoisomerism
Show Abstract · Added April 10, 2018
The first natural occurrence in optically active form of the dimeric flavonoid agathisflavone and definition of its axial chirality using chiroptical spectroscopic methods are described. The experimental electronic circular dichroism, electronic dissymmetry factor, optical rotatory dispersion, vibrational circular dichroism (VCD), and vibrational dissymmetry factor spectra of agathisflavone are presented and analyzed with their corresponding quantum chemical predictions to definitively assign the axial chirality of (-)-agathisflavone as (aS).
0 Communities
1 Members
0 Resources
MeSH Terms
A pH-Mediated Topological Switch within the N-Terminal Domain of Human Caveolin-3.
Kim JH, Schlebach JP, Lu Z, Peng D, Reasoner KC, Sanders CR
(2016) Biophys J 110: 2475-2485
MeSH Terms: Amino Acid Sequence, Caveolin 3, Circular Dichroism, Humans, Hydrogen-Ion Concentration, Membranes, Artificial, Micelles, Models, Molecular, Mutation, Nuclear Magnetic Resonance, Biomolecular, Phosphatidylglycerols, Protein Structure, Secondary, Solubility, Solutions
Show Abstract · Added November 21, 2018
Caveolins mediate the formation of caveolae, which are small omega-shaped membrane invaginations involved in a variety of cellular processes. There are three caveolin isoforms, the third of which (Cav3) is expressed in smooth and skeletal muscles. Mutations in Cav3 cause a variety of human muscular diseases. In this work, we characterize the secondary structure, dynamics, and topology of the monomeric form of the full-length lipidated protein. Cav3 consists of a series of membrane-embedded or surface-associated helical elements connected by extramembrane connecting loops or disordered domains. Our results also reveal that the N-terminal domain undergoes a large scale pH-mediated topological rearrangement between soluble and membrane-anchored forms. Considering that roughly one-third of pathogenic mutations in Cav3 influence charged residues located in this domain, we hypothesize that this transition is likely to be relevant to the molecular basis of Cav3-linked diseases. These results provide insight into the structure of Cav3 and set the stage for mechanistic investigations of the effects of pathogenic mutations.
Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Structural Analysis Using Chiroptical Spectroscopy: Insights and Cautions.
Polavarapu PL
(2016) Chirality 28: 445-52
MeSH Terms: Circular Dichroism, Hydrocarbons, Halogenated, Isoflurane, Models, Molecular, Molecular Structure, Pentanes, Quantum Theory, Spectrum Analysis, Raman, Stereoisomerism
Show Abstract · Added April 10, 2018
Chiroptical spectroscopy has evolved into a promising tool for chiral molecular structural determination in the last four decades. Determination of the absolute configurations (ACs) of bromochlorofluoromethane and [(2) H1 ,(2) H2 ,(2) H3 ]-neopentane demonstrated the enviable advantages of chiroptical spectroscopy. Furthermore, uncovering the errors in the ACs reported in the literature established a glimpse of what can be accomplished with the modern chiroptical spectroscopic methods. Despite these triumphs, it is important to exercise caution in the practice of chiroptical spectroscopic methods, because certain widely practiced approaches can lead to erroneous conclusions. Selected major accomplishments and special precautions needed for future applications are emphasized. Chirality 28:445-452, 2016. © 2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Absolute Configuration of (-)-Centratherin, a Sesquiterpenoid Lactone, Defined by Means of Chiroptical Spectroscopy.
Junior FM, Covington CL, de Albuquerque AC, Lobo JF, Borges RM, de Amorim MB, Polavarapu PL
(2015) J Nat Prod 78: 2617-23
MeSH Terms: Circular Dichroism, Lactones, Models, Chemical, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Optical Rotatory Dispersion, Sesquiterpenes, Stereoisomerism
Show Abstract · Added February 15, 2016
(-)-Centratherin is a bioactive sesquiterpenoid lactone, whose absolute configuration (AC) was not established, but has been proposed based on those of germacrane precursors. To verify this proposal, the experimental electronic circular dichroism (ECD), electronic dissymmetry factor (EDF), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational dissymmetry factor (VDF) spectra of (-)-centratherin have been analyzed with the corresponding density functional theoretical predictions. These analyses suggest the AC of naturally occurring (-)-centratherin to be (6R,7R,8S,10R,2'Z).
0 Communities
2 Members
0 Resources
8 MeSH Terms
Predicting near-UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory.
Norman P, Parello J, Polavarapu PL, Linares M
(2015) Phys Chem Chem Phys 17: 21866-79
MeSH Terms: Base Pairing, Circular Dichroism, DNA, B-Form, Electrons, Models, Molecular, Nucleosides, Nucleosomes, Quantum Theory, Spectrophotometry, Ultraviolet, Thermodynamics
Show Abstract · Added April 10, 2018
It is demonstrated that time-dependent density functional theory (DFT) calculations can accurately predict changes in near-UV electronic circular dichroism (ECD) spectra of DNA as the structure is altered from the linear (free) B-DNA form to the supercoiled N-DNA form found in nucleosome core particles. At the DFT/B3LYP level of theory, the ECD signal response is reduced by a factor of 6.7 in going from the B-DNA to the N-DNA form, and it is illustrated how more than 90% of the individual base-pair dimers contribute to this strong hypochromic effect. Of the several inter-base pair parameters, an increase in twist angles is identified as to strongly contribute to a reduced ellipticity. The present work provides first evidence that first-principles calculations can elucidate changes in DNA dichroism due to the supramolecular organization of the nucleoprotein particle and associates these changes with the local structural features of nucleosomal DNA.
0 Communities
1 Members
0 Resources
MeSH Terms