Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 191

Publication Record

Connections

Disruption of Neural Homeostasis as a Model of Relapse and Recurrence in Late-Life Depression.
Andreescu C, Ajilore O, Aizenstein HJ, Albert K, Butters MA, Landman BA, Karim HT, Krafty R, Taylor WD
(2019) Am J Geriatr Psychiatry 27: 1316-1330
MeSH Terms: Aged, Allostasis, Autonomic Nervous System, Brain, Circadian Rhythm, Cognitive Dysfunction, Depressive Disorder, Major, Homeostasis, Humans, Hypothalamo-Hypophyseal System, Models, Neurological, Models, Psychological, Neural Pathways, Pituitary-Adrenal System, Recurrence, Stress, Psychological
Show Abstract · Added March 3, 2020
The significant public health burden associated with late-life depression (LLD) is magnified by the high rates of recurrence. In this manuscript, we review what is known about recurrence risk factors, conceptualize recurrence within a model of homeostatic disequilibrium, and discuss the potential significance and challenges of new research into LLD recurrence. The proposed model is anchored in the allostatic load theory of stress. We review the allostatic response characterized by neural changes in network function and connectivity and physiologic changes in the hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system, and circadian rhythm. We discuss the role of neural networks' instability following treatment response as a source of downstream disequilibrium, triggering and/or amplifying abnormal stress response, cognitive dysfunction and behavioral changes, ultimately precipitating a full-blown recurrent episode of depression. We propose strategies to identify and capture early change points that signal recurrence risk through mobile technology to collect ecologically measured symptoms, accompanied by automated algorithms that monitor for state shifts (persistent worsening) and variance shifts (increased variability) relative to a patient's baseline. Identifying such change points in relevant sensor data could potentially provide an automated tool that could alert clinicians to at-risk individuals or relevant symptom changes even in a large practice.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output.
Tackenberg MC, McMahon DG
(2018) Neural Plast 2018: 8217345
MeSH Terms: Animals, Circadian Clocks, Circadian Rhythm, Humans, Photoperiod, Seasons, Suprachiasmatic Nucleus
Show Abstract · Added March 18, 2020
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
0 Communities
1 Members
0 Resources
MeSH Terms
Accelerated DNA methylation age in adolescent girls: associations with elevated diurnal cortisol and reduced hippocampal volume.
Davis EG, Humphreys KL, McEwen LM, Sacchet MD, Camacho MC, MacIsaac JL, Lin DTS, Kobor MS, Gotlib IH
(2017) Transl Psychiatry 7: e1223
MeSH Terms: Adolescent, Circadian Rhythm, DNA Methylation, Epigenesis, Genetic, Female, Hippocampus, Humans, Hydrocortisone, Magnetic Resonance Imaging, Saliva
Show Abstract · Added March 3, 2020
Numerous studies have linked exposure to stress to adverse health outcomes through the effects of cortisol, a product of the stress response system, on cellular aging processes. Accelerated DNA methylation age is a promising epigenetic marker associated with stress and disease risk that may constitute a link from stress response to changes in neural structures. Specifically, elevated glucocorticoid signaling likely contributes to accelerating DNA methylation age, which may signify a maladaptive stress-related cascade that leads to hippocampal atrophy. We examined the relations among diurnal cortisol levels, DNA methylation age and hippocampal volume in a longitudinal study of 46 adolescent girls. We computed area under the curve from two daily cortisol collection periods, and calculated DNA methylation age using previously established methods based on a set of CpG sites associated with chronological age. We computed a residual score by partialling out chronological age; higher discrepancies reflect relatively accelerated DNA methylation age. We assessed hippocampal volume via T1-weighted images and automated volumetric segmentation. We found that greater diurnal cortisol production was associated with accelerated DNA methylation age, which in turn was associated with reduced left hippocampal volume. Finally, accelerated DNA methylation age significantly mediated the association between diurnal cortisol and left hippocampal volume. Thus, accelerated DNA methylation age may be an epigenetic marker linking hypothalamic-pituitary-adrenal axis dysregulation with neural structure. If these findings are replicated, the current study provides a method for advancing our understanding of mechanisms by which glucocorticoid signaling is associated with cellular aging and brain development.
0 Communities
1 Members
0 Resources
MeSH Terms
Diurnal cortisol after early institutional care-Age matters.
Flannery JE, Gabard-Durnam LJ, Shapiro M, Goff B, Caldera C, Louie J, Gee DG, Telzer EH, Humphreys KL, Lumian DS, Tottenham N
(2017) Dev Cogn Neurosci 25: 160-166
MeSH Terms: Adolescent, Child, Child, Preschool, Circadian Rhythm, Cross-Sectional Studies, Female, Humans, Hydrocortisone, Hypothalamo-Hypophyseal System, Male, Pituitary-Adrenal System, Saliva
Show Abstract · Added March 3, 2020
Several studies have shown that young children who have experienced early caregiving adversity (e.g. previously institutionalization (PI)) exhibit flattened diurnal cortisol slopes; however, less is known about how these patterns might differ between children and adolescents, since the transition between childhood and adolescence is a time of purported plasticity in the hypothalamic-pituitary-adrenal (HPA) axis. PI youth experience a massive improvement in caregiving environment once adopted into families; therefore we anticipated that a developmental increase in HPA axis plasticity during adolescence might additionally allow for an enhanced enrichment effect by the adoptive family. In a cross-sectional sample of 197 youths (PI and Comparison; 4-15 years old) we observed age-related group differences in diurnal slope. First replicating previous findings, PI children exhibited flattened diurnal slope. This group difference, however, was not observed in adolescents. Moderation analyses showed that pubertal development, increased time with family, and early adoption contributed to the steeper diurnal cortisol slope in PI adolescents. These findings add support to existing theories positing that the transition between middle childhood and adolescence may mark an additional sensitive period for diurnal cortisol patterning, allowing PI youth to benefit from the enriched environment provided by adoptive parents during this period of development.
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The impact of the severity of early life stress on diurnal cortisol: The role of puberty.
King LS, Colich NL, LeMoult J, Humphreys KL, Ordaz SJ, Price AN, Gotlib IH
(2017) Psychoneuroendocrinology 77: 68-74
MeSH Terms: Adolescent, Child, Circadian Rhythm, Female, Humans, Hydrocortisone, Hypothalamo-Hypophyseal System, Male, Pituitary-Adrenal System, Puberty, Saliva, Stress, Psychological
Show Abstract · Added March 3, 2020
Researchers have documented dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in children and adolescents who experienced early life stress (ELS). The precise nature of this dysregulation, however, has been difficult to discern. In fact, both elevated and blunted patterns of diurnal cortisol regulation have been reported in children and adolescents exposed to greater ELS, including both reduced and heightened cortisol levels and change in cortisol across the day. These divergent findings may be due to developmental changes in the relation between ELS and HPA-axis functioning. The present study was designed to examine the role of puberty in the impact of the severity of ELS on the regulation of diurnal cortisol. Boys and girls (N=145) ages 9-13 years recruited from lower-risk communities completed an interview about their ELS experiences and at-home collection of diurnal cortisol. ELS experiences were objectively coded for severity, and children's level of pubertal development was measured using Tanner Staging. Multi-level piecewise mixed-effects models tested the effects of ELS severity and pubertal stage on cortisol levels at waking, the cortisol awakening response (CAR), and the daytime cortisol slope. While we found no significant interactive effects of pubertal stage and ELS severity on cortisol levels at waking or the daytime cortisol slope, findings indicated that pubertal stage interacted with ELS severity to predict the cortisol awakening response (CAR). Specifically, in earlier puberty, higher ELS was associated with a blunted CAR compared to lower ELS; in contrast, in later puberty, higher ELS was associated with a heightened CAR compared to lower ELS. Differences in the relation between ELS severity and the CAR were uniquely determined by puberty, and not by age. By considering and examining the role of puberty, the current study provides a developmental explanation for previous divergent findings of both blunted and heightened patterns of diurnal cortisol following ELS. These results indicate that careful attention should be given to children's pubertal status before drawing conclusions concerning the nature of diurnal cortisol dysregulation.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The Retina and Other Light-sensitive Ocular Clocks.
Besharse JC, McMahon DG
(2016) J Biol Rhythms 31: 223-43
MeSH Terms: Animals, Circadian Clocks, Circadian Rhythm, Dopamine, Humans, Light, Melatonin, Mice, Photoreceptor Cells, Vertebrate, Retina, Suprachiasmatic Nucleus, Vision, Ocular
Show Abstract · Added March 18, 2020
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
© 2016 The Author(s).
0 Communities
1 Members
0 Resources
MeSH Terms
Mammalian retinal Müller cells have circadian clock function.
Xu L, Ruan G, Dai H, Liu AC, Penn J, McMahon DG
(2016) Mol Vis 22: 275-83
MeSH Terms: Animals, CLOCK Proteins, Cells, Cultured, Circadian Clocks, Circadian Rhythm, Ependymoglial Cells, Female, Fluorescent Antibody Technique, Indirect, Genetic Vectors, Humans, Lentivirus, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, RNA, Small Interfering, Transfection
Show Abstract · Added March 18, 2020
PURPOSE - To test whether Müller glia of the mammalian retina have circadian rhythms.
METHODS - We used Müller glia cultures isolated from mouse lines or from humans and bioluminescent reporters of circadian clock genes to monitor molecular circadian rhythms. The clock gene dependence of the Müller cell rhythms was tested using clock gene knockout mouse lines or with siRNA for specific clock genes.
RESULTS - We demonstrated that retinal Müller glia express canonical circadian clock genes, are capable of sustained circadian oscillations in isolation from other cell types, and exhibit unique features of their molecular circadian clock compared to the retina as a whole. Mouse and human Müller cells demonstrated circadian clock function; however, they exhibited species-specific differences in the gene dependence of their clocks.
CONCLUSIONS - Müller cells are the first mammalian retinal cell type in which sustained circadian rhythms have been demonstrated in isolation from other retinal cells.
0 Communities
1 Members
0 Resources
MeSH Terms
Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks.
Shi SQ, White MJ, Borsetti HM, Pendergast JS, Hida A, Ciarleglio CM, de Verteuil PA, Cadar AG, Cala C, McMahon DG, Shelton RC, Williams SM, Johnson CH
(2016) Transl Psychiatry 6: e748
MeSH Terms: Circadian Clocks, Circadian Rhythm, Depressive Disorder, Major, Female, Genetic Variation, Humans, Male, Sex Factors
Show Abstract · Added March 18, 2020
An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression.
0 Communities
1 Members
0 Resources
MeSH Terms
The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.
Lubinski AJ, Page TL
(2016) J Biol Rhythms 31: 161-9
MeSH Terms: Animals, Circadian Clocks, Circadian Rhythm, Cockroaches, Conditioning, Classical, Conditioning, Operant, Learning, Light, Mental Recall, Olfactory Receptor Neurons, Optic Lobe, Nonmammalian, Pyrazoles, Smell
Show Abstract · Added February 8, 2016
The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain.
© 2015 The Author(s).
0 Communities
1 Members
0 Resources
13 MeSH Terms
Genetics of Plasminogen Activator Inhibitor-1 (PAI-1) in a Ghanaian Population.
White MJ, Kodaman NM, Harder RH, Asselbergs FW, Vaughan DE, Brown NJ, Moore JH, Williams SM
(2015) PLoS One 10: e0136379
MeSH Terms: Adult, Cardiovascular Diseases, Circadian Rhythm, European Continental Ancestry Group, Female, Ghana, Humans, Male, N-Acetylgalactosamine-4-Sulfatase, Period Circadian Proteins, Plasminogen Activator Inhibitor 1, Polymorphism, Single Nucleotide
Show Abstract · Added April 6, 2017
Plasminogen activator inhibitor 1 (PAI-1), a major modulator of the fibrinolytic system, is an important factor in cardiovascular disease (CVD) susceptibility and severity. PAI-1 is highly heritable, but the few genes associated with it explain only a small portion of its variation. Studies of PAI-1 typically employ linear regression to estimate the effects of genetic variants on PAI-1 levels, but PAI-1 is not normally distributed, even after transformation. Therefore, alternative statistical methods may provide greater power to identify important genetic variants. Additionally, most genetic studies of PAI-1 have been performed on populations of European descent, limiting the generalizability of their results. We analyzed >30,000 variants for association with PAI-1 in a Ghanaian population, using median regression, a non-parametric alternative to linear regression. Three variants associated with median PAI-1, the most significant of which was in the gene arylsulfatase B (ARSB) (p = 1.09 x 10(-7)). We also analyzed the upper quartile of PAI-1, the most clinically relevant part of the distribution, and found 19 SNPs significantly associated in this quartile. Of note an association was found in period circadian clock 3 (PER3). Our results reveal novel associations with median and elevated PAI-1 in an understudied population. The lack of overlap between the two analyses indicates that the genetic effects on PAI-1 are not uniform across its distribution. They also provide evidence of the generalizability of the circadian pathway's effect on PAI-1, as a recent meta-analysis performed in Caucasian populations identified another circadian clock gene (ARNTL).
0 Communities
1 Members
0 Resources
12 MeSH Terms