Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 17

Publication Record

Connections

Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence.
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL
(2016) Sci Transl Med 8: 334ra53
MeSH Terms: Antineoplastic Agents, Cell Line, Tumor, Cell Proliferation, Chromosomes, Human, Pair 9, Cohort Studies, Female, Gene Amplification, Gene Knockdown Techniques, Genetic Loci, Humans, Janus Kinase 2, Middle Aged, STAT3 Transcription Factor, STAT6 Transcription Factor, Signal Transduction, Spheroids, Cellular, Triple Negative Breast Neoplasms
Show Abstract · Added April 6, 2017
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
Copyright © 2016, American Association for the Advancement of Science.
0 Communities
2 Members
0 Resources
17 MeSH Terms
A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology.
Hungate EA, Vora SR, Gamazon ER, Moriyama T, Best T, Hulur I, Lee Y, Evans TJ, Ellinghaus E, Stanulla M, Rudant J, Orsi L, Clavel J, Milne E, Scott RJ, Pui CH, Cox NJ, Loh ML, Yang JJ, Skol AD, Onel K
(2016) Nat Commun 7: 10635
MeSH Terms: African Americans, Case-Control Studies, Child, Child, Preschool, Chromosome Mapping, Chromosomes, Human, Pair 9, Cyclin-Dependent Kinase Inhibitor p15, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Hispanic Americans, Humans, Infant, Male, Polymorphism, Single Nucleotide, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
Show Abstract · Added February 22, 2016
Paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is the most common cancer of childhood, yet little is known about BCP-ALL predisposition. In this study, in 2,187 cases of European ancestry and 5,543 controls, we discover and replicate a locus indexed by rs77728904 at 9p21.3 associated with BCP-ALL susceptibility (Pcombined=3.32 × 10(-15), OR=1.72) and independent from rs3731217, the previously reported ALL-associated variant in this region. Of correlated SNPs tagged by this locus, only rs662463 is significant in African Americans, suggesting it is a plausible causative variant. Functional analysis shows that rs662463 is a cis-eQTL for CDKN2B, with the risk allele associated with lower expression, and suggests that rs662463 influences BCP-ALL risk by regulating CDKN2B expression through CEBPB signalling. Functional analysis of rs3731217 suggests it is associated with BCP-ALL by acting within a splicing regulatory element determining CDKN2A exon 3 usage (P=0.01). These findings provide new insights into the critical role of the CDKN2 locus in BCP-ALL aetiology.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women.
Wang Z, Seow WJ, Shiraishi K, Hsiung CA, Matsuo K, Liu J, Chen K, Yamji T, Yang Y, Chang IS, Wu C, Hong YC, Burdett L, Wyatt K, Chung CC, Li SA, Yeager M, Hutchinson A, Hu W, Caporaso N, Landi MT, Chatterjee N, Song M, Fraumeni JF, Kohno T, Yokota J, Kunitoh H, Ashikawa K, Momozawa Y, Daigo Y, Mitsudomi T, Yatabe Y, Hida T, Hu Z, Dai J, Ma H, Jin G, Song B, Wang Z, Cheng S, Yin Z, Li X, Ren Y, Guan P, Chang J, Tan W, Chen CJ, Chang GC, Tsai YH, Su WC, Chen KY, Huang MS, Chen YM, Zheng H, Li H, Cui P, Guo H, Xu P, Liu L, Iwasaki M, Shimazu T, Tsugane S, Zhu J, Jiang G, Fei K, Park JY, Kim YH, Sung JS, Park KH, Kim YT, Jung YJ, Kang CH, Park IK, Kim HN, Jeon HS, Choi JE, Choi YY, Kim JH, Oh IJ, Kim YC, Sung SW, Kim JS, Yoon HI, Kweon SS, Shin MH, Seow A, Chen Y, Lim WY, Liu J, Wong MP, Lee VH, Bassig BA, Tucker M, Berndt SI, Chow WH, Ji BT, Wang J, Xu J, Sihoe AD, Ho JC, Chan JK, Wang JC, Lu D, Zhao X, Zhao Z, Wu J, Chen H, Jin L, Wei F, Wu G, An SJ, Zhang XC, Su J, Wu YL, Gao YT, Xiang YB, He X, Li J, Zheng W, Shu XO, Cai Q, Klein R, Pao W, Lawrence C, Hosgood HD, Hsiao CF, Chien LH, Chen YH, Chen CH, Wang WC, Chen CY, Wang CL, Yu CJ, Chen HL, Su YC, Tsai FY, Chen YS, Li YJ, Yang TY, Lin CC, Yang PC, Wu T, Lin D, Zhou B, Yu J, Shen H, Kubo M, Chanock SJ, Rothman N, Lan Q
(2016) Hum Mol Genet 25: 620-9
MeSH Terms: Adult, Alleles, Asian Continental Ancestry Group, Case-Control Studies, Chromosomes, Human, Pair 12, Chromosomes, Human, Pair 6, Chromosomes, Human, Pair 9, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Lung Neoplasms, Odds Ratio, Polymorphism, Single Nucleotide, Smoking
Show Abstract · Added April 3, 2018
Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six susceptibility loci associated with lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3) data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at 6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10(-13)), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10(-10)) and rs11610143 at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10(-9)). These findings identified new genetic susceptibility alleles for lung cancer in never-smoking women in Asia and merit follow-up to understand their biological underpinnings.
Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
0 Communities
1 Members
0 Resources
MeSH Terms
Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.
Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, Johnson N, Ghoussaini M, Hopper JL, Southey MC, Apicella C, Stone J, Schmidt MK, Broeks A, Van't Veer LJ, Hogervorst FB, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Gibson L, Aitken Z, Warren H, Sawyer E, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Schneeweiss A, Sohn C, Guénel P, Truong T, Cordina-Duverger E, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Benitez J, Zamora MP, Arias Perez JI, Menéndez P, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Hamann U, Brauch H, Justenhoven C, Brüning T, Ko YD, Nevanlinna H, Aittomäki K, Blomqvist C, Khan S, Bogdanova N, Dörk T, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Beesley J, Lambrechts D, Moisse M, Floris G, Beuselinck B, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Peissel B, Pensotti V, Couch FJ, Olson JE, Slettedahl S, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Kristensen V, Alnæs GG, Nord S, Borresen-Dale AL, Zheng W, Deming-Halverson S, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RA, Seynaeve CM, Van Asperen CJ, Garcia-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson M, Klevebring D, Hooning MJ, Hollestelle A, van Deurzen CH, Kriege M, Hall P, Li J, Liu J, Humphreys K, Cox A, Cross SS, Reed MW, Pharoah PD, Dunning AM, Shah M, Perkins BJ, Jakubowska A, Lubinski J, Jaworska-Bieniek K, Durda K, Ashworth A, Swerdlow A, Jones M, Schoemaker MJ, Meindl A, Schmutzler RK, Olswold C, Slager S, Toland AE, Yannoukakos D, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Matsuo K, Ito H, Iwata H, Ishiguro J, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Teo SH, Yip CH, Kang P, Ikram MK, Shu XO, Lu W, Gao YT, Cai H, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Lee SC, Sangrajrang S, Gaborieau V, Brennan P, Mckay J, Wu PE, Hou MF, Yu JC, Shen CY, Blot W, Cai Q, Signorello LB, Luccarini C, Bayes C, Ahmed S, Maranian M, Healey CS, González-Neira A, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Hunter DJ, Lindstrom S, Dennis J, Michailidou K, Bolla MK, Easton DF, dos Santos Silva I, Fletcher O, Peto J, GENICA Network, kConFab Investigators, Australian Ovarian Cancer Study Group
(2015) Hum Mol Genet 24: 2966-84
MeSH Terms: Adult, Aged, Asian Continental Ancestry Group, Breast Neoplasms, Chromosome Mapping, Chromosomes, Human, Pair 9, Enhancer Elements, Genetic, Estrogen Receptor alpha, European Continental Ancestry Group, Female, GATA3 Transcription Factor, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Hepatocyte Nuclear Factor 3-alpha, Humans, Kruppel-Like Transcription Factors, Middle Aged, Polymorphism, Single Nucleotide, Risk
Show Abstract · Added September 28, 2015
We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
© The Author 2015. Published by Oxford University Press.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Genome-wide association study of Tourette's syndrome.
Scharf JM, Yu D, Mathews CA, Neale BM, Stewart SE, Fagerness JA, Evans P, Gamazon E, Edlund CK, Service SK, Tikhomirov A, Osiecki L, Illmann C, Pluzhnikov A, Konkashbaev A, Davis LK, Han B, Crane J, Moorjani P, Crenshaw AT, Parkin MA, Reus VI, Lowe TL, Rangel-Lugo M, Chouinard S, Dion Y, Girard S, Cath DC, Smit JH, King RA, Fernandez TV, Leckman JF, Kidd KK, Kidd JR, Pakstis AJ, State MW, Herrera LD, Romero R, Fournier E, Sandor P, Barr CL, Phan N, Gross-Tsur V, Benarroch F, Pollak Y, Budman CL, Bruun RD, Erenberg G, Naarden AL, Lee PC, Weiss N, Kremeyer B, Berrío GB, Campbell DD, Cardona Silgado JC, Ochoa WC, Mesa Restrepo SC, Muller H, Valencia Duarte AV, Lyon GJ, Leppert M, Morgan J, Weiss R, Grados MA, Anderson K, Davarya S, Singer H, Walkup J, Jankovic J, Tischfield JA, Heiman GA, Gilbert DL, Hoekstra PJ, Robertson MM, Kurlan R, Liu C, Gibbs JR, Singleton A, North American Brain Expression Consortium, Hardy J, UK Human Brain Expression Database, Strengman E, Ophoff RA, Wagner M, Moessner R, Mirel DB, Posthuma D, Sabatti C, Eskin E, Conti DV, Knowles JA, Ruiz-Linares A, Rouleau GA, Purcell S, Heutink P, Oostra BA, McMahon WM, Freimer NB, Cox NJ, Pauls DL
(2013) Mol Psychiatry 18: 721-8
MeSH Terms: Adolescent, Adult, Attention Deficit Disorder with Hyperactivity, Case-Control Studies, Chromosomes, Human, Pair 9, European Continental Ancestry Group, Female, Fibrillar Collagens, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, International Cooperation, Male, Meta-Analysis as Topic, Obsessive-Compulsive Disorder, Polymorphism, Single Nucleotide, Tourette Syndrome, Young Adult
Show Abstract · Added February 22, 2016
Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (P<5 × 10(-8)); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (P=1.85 × 10(-6)). A secondary analysis including an additional 211 cases and 285 controls from two closely related Latin American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (P=3.6 × 10(-7) for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations.
Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, Maeda S, Wen W, Dorajoo R, Go MJ, Zheng W, Kato N, Wu JY, Lu Q, GIANT consortium, Tsunoda T, Yamamoto K, Nakamura Y, Kamatani N, Tanaka T
(2012) Nat Genet 44: 302-6
MeSH Terms: Asian Continental Ancestry Group, Body Mass Index, Chromosomes, Human, Pair 6, Chromosomes, Human, Pair 9, Cyclin-Dependent Kinase 5, Far East, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Kruppel-Like Transcription Factors, Obesity, Polymorphism, Single Nucleotide, tRNA Methyltransferases
Show Abstract · Added June 26, 2014
Obesity is a disorder with a complex genetic etiology, and its epidemic is a worldwide problem. Although multiple genetic loci associated with body mass index, the most common measure of obesity, have been identified in European populations, few studies have focused on Asian populations. Here we report a genome-wide association study and replication studies with 62,245 east Asian subjects, which identified two new body mass index-associated loci in the CDKAL1 locus at 6p22 (rs2206734, P = 1.4 × 10(-11)) and the KLF9 locus at 9q21 (rs11142387, P = 1.3 × 10(-9)), as well as several previously reported loci (the SEC16B, BDNF, FTO, MC4R and GIPR loci, P < 5.0 × 10(-8)). We subsequently performed gene-gene interaction analyses and identified an interaction (P = 2.0 × 10(-8)) between a SNP in the KLF9 locus (rs11142387) and one in the MSTN (also known as GDF8) locus at 2q32 (rs13034723). These findings should provide useful insights into the etiology of obesity.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes.
Larson MG, Atwood LD, Benjamin EJ, Cupples LA, D'Agostino RB, Fox CS, Govindaraju DR, Guo CY, Heard-Costa NL, Hwang SJ, Murabito JM, Newton-Cheh C, O'Donnell CJ, Seshadri S, Vasan RS, Wang TJ, Wolf PA, Levy D
(2007) BMC Med Genet 8 Suppl 1: S5
MeSH Terms: Adult, Cardiovascular Diseases, Chromosomes, Human, Pair 9, Cohort Studies, Disease Susceptibility, Female, Genetic Linkage, Genetic Markers, Genome, Human, Genotype, Humans, Male, Middle Aged, Models, Genetic, Phenotype, Polymorphism, Single Nucleotide, Proportional Hazards Models, Treatment Outcome
Show Abstract · Added April 15, 2014
BACKGROUND - Cardiovascular disease (CVD) and its most common manifestations--including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF)--are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.
METHODS - In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency > or =0.10, genotype call rate > or =0.80, and Hardy-Weinberg equilibrium p-value > or = 0.001.
RESULTS - Six associations yielded p < 10(-5). The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 x 10(-6); major CHD, rs2549513, p = 9.7 x 10(-6); AF, rs958546, p = 4.8 x 10(-6); HF: rs740363, p = 8.8 x 10(-6). Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7-1.9 x 10(-5)) and major CHD (p 2.5-3.5 x 10(-4)) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 x 10(-6)) and HF (p = 1.2 x 10(-4)). Complete results for these phenotypes can be found at the dbgap website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite.
CONCLUSION - No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Genetic linkage of human height is confirmed to 9q22 and Xq24.
Liu YZ, Xiao P, Guo YF, Xiong DH, Zhao LJ, Shen H, Liu YJ, Dvornyk V, Long JR, Deng HY, Li JL, Recker RR, Deng HW
(2006) Hum Genet 119: 295-304
MeSH Terms: Adult, Aged, Body Height, Chromosome Mapping, Chromosomes, Human, Pair 9, Chromosomes, Human, X, Family, Female, Genetic Linkage, Humans, Inheritance Patterns, Lod Score, Male, Middle Aged, Quantitative Trait Loci
Show Abstract · Added December 10, 2013
Human height is an important and heritable trait. Our previous two genome-wide linkage studies using 630 (WG1 study) and an extended sample of 1,816 Caucasians (WG2 study) identified 9q22 [maximum LOD score (MLS)=2.74 in the WG2 study] and preliminarily confirmed Xq24 (two-point LOD score=1.91 in the WG1 study, 2.64 in the WG2 study) linked to height. Here, with a much further extended large sample containing 3,726 Caucasians, we performed a new genome-wide linkage scan and confirmed, in high significance, the two regions' linkage to height. An MLS of 4.34 was detected on 9q22 and a two-point LOD score of 5.63 was attained for Xq24. In an independent sub-sample (i.e., the subjects not involved in the WG1 and WG2 studies), the two regions also achieved significant empirical P values (0.002 and 0.004, respectively) for "region-wise" linkage confirmation. Importantly, the two regions were replicated on a genotyping platform different from the WG1 and WG2 studies (i.e., a different set of markers and different genotyping instruments). Interestingly, 9q22 harbors the ROR2 gene, which is required for growth plate development, and Xq24 was linked to short stature. With the largest sample from a single population of the same ethnicity in the field of linkage studies for complex traits, our current study, together with two previous ones, provided overwhelming evidence substantiating 9q22 and Xq24 for height variation. In particular, our three consecutive whole genome studies are uniquely valuable as they represent the first practical (rather than simulated) example of how significant increase in sample size may improve linkage detection for human complex traits.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2.
Suzuki K, Lareyre JJ, Sánchez D, Gutierrez G, Araki Y, Matusik RJ, Orgebin-Crist MC
(2004) Gene 339: 49-59
MeSH Terms: Acute-Phase Proteins, Amino Acid Sequence, Animals, Blotting, Northern, Carrier Proteins, Chromosome Mapping, Chromosomes, Human, Pair 9, Chromosomes, Mammalian, Cloning, Molecular, DNA, Complementary, Epididymis, Evolution, Molecular, Female, Gene Duplication, Gene Expression Profiling, Humans, In Situ Hybridization, Lipocalin-2, Lipocalins, Male, Mice, Mice, Inbred ICR, Mice, Inbred Strains, Molecular Sequence Data, Multigene Family, Oncogene Proteins, Orchiectomy, Phylogeny, Sequence Analysis, DNA, Sequence Homology, Amino Acid, Synteny
Show Abstract · Added June 11, 2010
We previously identified two murine secretory proteins, mE-RABP(Lcn5) and mEP17(Lcn8), belonging to the lipocalin family and specifically expressed in the epididymis. The genes are contiguous and localized on mouse chromosome 2. We now show that five other related lipocalin genes, Lcn9, Lcn10, Lcn11, Lcn12, and Lcn13, that evolved by in situ tandem duplication are present on the same locus. Lcn9, Lcn10, Lcn12, and Lcn13 genes, like Lcn5 and Lcn8 genes, are specifically expressed in the mouse epididymis. However, each gene has a distinct spatial expression within the epididymis and different regulation. Analysis of the human genome sequence shows the presence of genes encoding lipocalins with genomic organization, chromosomal arrangement, and orientation similar to that of the corresponding murine genes, indicating that the epididymal cluster is evolutionary conserved. A phylogenetic analysis of the new epididymal proteins reveals their spread position in the lipocalin protein family tree. This suggests the preservation of the regulatory sequences, while protein sequences have greatly diverged, reflecting functional diversity and possibly multifunctionality. In terms of the cluster ancestry, epididymal expression possibly appeared in a PGDS-like lipocalin in amniotes, and the duplications generating the cluster occurred at least in the common ancestor of rodents and primates. The presence and conservation of a cluster of five genes encoding epididymal lipocalins, differently regulated and regionalized in the epididymis, strongly suggests that these proteins may play an important role for male fertility.
1 Communities
1 Members
0 Resources
31 MeSH Terms
Identification and characterization of a phosphoinositide phosphate kinase homolog.
Chang JD, Field SJ, Rameh LE, Carpenter CL, Cantley LC
(2004) J Biol Chem 279: 11672-9
MeSH Terms: Amino Acid Sequence, Animals, Base Sequence, Blotting, Western, Brain, Cell Line, Chromosomes, Human, Pair 9, DNA Primers, Humans, Mice, Minor Histocompatibility Antigens, Molecular Sequence Data, Mutagenesis, Site-Directed, Phosphotransferases (Alcohol Group Acceptor), Protein Biosynthesis, Sequence Homology, Amino Acid, Transcription, Genetic
Show Abstract · Added November 26, 2018
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) plays a central role in regulating the actin cytoskeleton as a substrate for phosphoinositide 3-kinase and phospholipase C as well as by binding directly to proteins that control the processes of actin monomer sequestration, filament severing, capping, nucleation, cross-linking, and bundling (Ma, L., Cantley, L. C., Janmey, P. A., and Kirschner, M. W. (1998) J. Cell Biol. 140, 1125-1136; Hinchliffe, K. (2000) Curr. Biol. 10, R104-R1051). Three related phosphatidylinositol 4-phosphate 5-kinases (PI(4)P 5-kinases) have been identified in mammalian cells (types Ialpha, Ibeta, and Igamma) and appear to play distinct roles in actin remodeling. Here we have identified a fourth member of this family by searching the human genome and EST data bases. This new protein, which we have designated phosphatidylinositol phosphate kinase homolog (PIPKH), is expressed at relatively high levels in brain and testis. Immunoprecipitates of PIPKH expressed in mammalian cells contain PI(4)P 5-kinase activity, but this activity is not affected by mutations in residues that inactivate other type I PI(4)P 5-kinases. We show that the PI(4)P 5-kinase activity in PIPKH immunoprecipitates can be explained by the ability of PIPKH to heterodimerize with other type I PI(4)P 5-kinases. Transfection of 293t cells with PIPKH resulted in >8-fold increase in total phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) without a significant net increase in total PI(4,5)P(2). When coexpressed with PIPKH, green fluorescent protein (GFP) fusion construct of the pleckstrin homology domain from Bruton's tyrosine kinase (GFP-BTK-PH) localized in intracellular vesicular structures, suggesting an unusual intracellular site of PI(3,4,5)P(3) production. Finally, expression of PIPKH induced the reorganization of actin from predominantly stress fibers to predominantly foci and comets similar to those observed previously in cells infected with the intracellular pathogen Listeria or transfected with recombinant PIPKIalpha. These results suggest that PIPKH acts as a scaffold to localize and regulate type I PI(4)P 5-kinases and the synthesis of PI(3,4,5)P(3).
0 Communities
1 Members
0 Resources
MeSH Terms