Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 27

Publication Record

Connections

High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21) AML.
Zhao Y, Liu Q, Acharya P, Stengel KR, Sheng Q, Zhou X, Kwak H, Fischer MA, Bradner JE, Strickland SA, Mohan SR, Savona MR, Venters BJ, Zhou MM, Lis JT, Hiebert SW
(2016) Cell Rep 16: 2003-16
MeSH Terms: Antineoplastic Agents, Azepines, Cell Line, Tumor, Chromosomes, Human, Pair 21, Chromosomes, Human, Pair 8, Clustered Regularly Interspaced Short Palindromic Repeats, DNA-Directed RNA Polymerases, Drug Resistance, Neoplasm, Enhancer Elements, Genetic, Gene Expression Regulation, Leukemic, High-Throughput Nucleotide Sequencing, Humans, Leukemia, Myeloid, Acute, MicroRNAs, Multigene Family, Myeloid Cell Leukemia Sequence 1 Protein, Promoter Regions, Genetic, Protein Isoforms, Proteins, Proto-Oncogene Proteins c-kit, Transcription, Genetic, Translocation, Genetic, Triazoles
Show Abstract · Added April 6, 2017
Bromodomain and extra-terminal domain (BET) family inhibitors offer an approach to treating hematological malignancies. We used precision nuclear run-on transcription sequencing (PRO-seq) to create high-resolution maps of active RNA polymerases across the genome in t(8;21) acute myeloid leukemia (AML), as these polymerases are exceptionally sensitive to BET inhibitors. PRO-seq identified over 1,400 genes showing impaired release of promoter-proximal paused RNA polymerases, including the stem cell factor receptor tyrosine kinase KIT that is mutated in t(8;21) AML. PRO-seq also identified an enhancer 3' to KIT. Chromosome conformation capture confirmed contacts between this enhancer and the KIT promoter, while CRISPRi-mediated repression of this enhancer impaired cell growth. PRO-seq also identified microRNAs, including MIR29C and MIR29B2, that target the anti-apoptotic factor MCL1 and were repressed by BET inhibitors. MCL1 protein was upregulated, and inhibition of BET proteins sensitized t(8:21)-containing cells to MCL1 inhibition, suggesting a potential mechanism of resistance to BET-inhibitor-induced cell death.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer.
Shi J, Zhang Y, Zheng W, Michailidou K, Ghoussaini M, Bolla MK, Wang Q, Dennis J, Lush M, Milne RL, Shu XO, Beesley J, Kar S, Andrulis IL, Anton-Culver H, Arndt V, Beckmann MW, Zhao Z, Guo X, Benitez J, Beeghly-Fadiel A, Blot W, Bogdanova NV, Bojesen SE, Brauch H, Brenner H, Brinton L, Broeks A, Brüning T, Burwinkel B, Cai H, Canisius S, Chang-Claude J, Choi JY, Couch FJ, Cox A, Cross SS, Czene K, Darabi H, Devilee P, Droit A, Dork T, Fasching PA, Fletcher O, Flyger H, Fostira F, Gaborieau V, García-Closas M, Giles GG, Mervi Grip, Guenel P, Haiman CA, Hamann U, Hartman M, Miao H, Hollestelle A, Hopper JL, Hsiung CN, kConFab Investigators, Ito H, Jakubowska A, Johnson N, Torres D, Kabisch M, Kang D, Khan S, Knight JA, Kosma VM, Lambrechts D, Li J, Lindblom A, Lophatananon A, Lubinski J, Mannermaa A, Manoukian S, Le Marchand L, Margolin S, Marme F, Matsuo K, McLean C, Meindl A, Muir K, Neuhausen SL, Nevanlinna H, Nord S, Børresen-Dale AL, Olson JE, Orr N, van den Ouweland AMW, Peterlongo P, Putti TC, Rudolph A, Sangrajrang S, Sawyer EJ, Schmidt MK, Schmutzler RK, Shen CY, Hou MF, Shrubsole MJ, Southey MC, Swerdlow A, Teo SH, Thienpont B, Toland AE, Tollenaar RAEM, Tomlinson I, Truong T, Tseng CC, Wen W, Winqvist R, Wu AH, Yip CH, Zamora PM, Zheng Y, Floris G, Cheng CY, Hooning MJ, Martens JWM, Seynaeve C, Kristensen VN, Hall P, Pharoah PDP, Simard J, Chenevix-Trench G, Dunning AM, Antoniou AC, Easton DF, Cai Q, Long J
(2016) Int J Cancer 139: 1303-1317
MeSH Terms: Alleles, Breast Neoplasms, Case-Control Studies, Chromosome Mapping, Chromosomes, Human, Pair 8, European Continental Ancestry Group, Female, Genetic Variation, Genome-Wide Association Study, Genotype, Haplotypes, Humans, Linkage Disequilibrium, Odds Ratio, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk
Show Abstract · Added April 18, 2017
Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.
© 2016 UICC.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5.
Kim T, Cui R, Jeon YJ, Lee JH, Lee JH, Sim H, Park JK, Fadda P, Tili E, Nakanishi H, Huh MI, Kim SH, Cho JH, Sung BH, Peng Y, Lee TJ, Luo Z, Sun HL, Wei H, Alder H, Oh JS, Shim KS, Ko SB, Croce CM
(2014) Proc Natl Acad Sci U S A 111: 4173-8
MeSH Terms: Base Sequence, Cell Line, Tumor, Chromosomes, Human, Pair 8, Enhancer Elements, Genetic, Flow Cytometry, Gene Expression Regulation, Neoplastic, Genetic Predisposition to Disease, Humans, Molecular Sequence Data, Neoplasms, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, RNA, Long Noncoding, RNA, Small Interfering, Real-Time Polymerase Chain Reaction, Sequence Analysis, DNA
Show Abstract · Added March 8, 2014
The mechanism by which the 8q24 MYC enhancer region, including cancer-associated variant rs6983267, increases cancer risk is unknown due to the lack of protein-coding genes at 8q24.21. Here we report the identification of long noncoding RNAs named cancer-associated region long noncoding RNAs (CARLos) in the 8q24 region. The expression of one of the long noncoding RNAs, CARLo-5, is significantly correlated with the rs6983267 allele associated with increased cancer susceptibility. We also found the MYC enhancer region physically interacts with the active regulatory region of the CARLo-5 promoter, suggesting long-range interaction of MYC enhancer with the CARLo-5 promoter regulates CARLo-5 expression. Finally, we demonstrate that CARLo-5 has a function in cell-cycle regulation and tumor development. Overall, our data provide a key of the mystery of the 8q24 gene desert.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO and CCFR consortia.
Cheng I, Kocarnik JM, Dumitrescu L, Lindor NM, Chang-Claude J, Avery CL, Caberto CP, Love SA, Slattery ML, Chan AT, Baron JA, Hindorff LA, Park SL, Schumacher FR, Hoffmeister M, Kraft P, Butler AM, Duggan DJ, Hou L, Carlson CS, Monroe KR, Lin Y, Carty CL, Mann S, Ma J, Giovannucci EL, Fuchs CS, Newcomb PA, Jenkins MA, Hopper JL, Haile RW, Conti DV, Campbell PT, Potter JD, Caan BJ, Schoen RE, Hayes RB, Chanock SJ, Berndt SI, Küry S, Bézieau S, Ambite JL, Kumaraguruparan G, Richardson DM, Goodloe RJ, Dilks HH, Baker P, Zanke BW, Lemire M, Gallinger S, Hsu L, Jiao S, Harrison TA, Seminara D, Haiman CA, Kooperberg C, Wilkens LR, Hutter CM, White E, Crawford DC, Heiss G, Hudson TJ, Brenner H, Bush WS, Casey G, Le Marchand L, Peters U
(2014) Gut 63: 800-7
MeSH Terms: Aged, Chromosomes, Human, Pair 8, Colorectal Neoplasms, Female, Genetic Markers, Genetic Pleiotropy, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotyping Techniques, Humans, Logistic Models, Male, Middle Aged, Polymorphism, Single Nucleotide, Principal Component Analysis, Registries, Risk Factors
Show Abstract · Added May 5, 2017
OBJECTIVE - Genome-wide association studies have identified a large number of single nucleotide polymorphisms (SNPs) associated with a wide array of cancer sites. Several of these variants demonstrate associations with multiple cancers, suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesised that SNPs previously associated with other cancers may additionally be associated with colorectal cancer. In a large-scale study, we examined 171 SNPs previously associated with 18 different cancers for their associations with colorectal cancer.
DESIGN - We examined 13 338 colorectal cancer cases and 40 967 controls from three consortia: Population Architecture using Genomics and Epidemiology (PAGE), Genetic Epidemiology of Colorectal Cancer (GECCO), and the Colon Cancer Family Registry (CCFR). Study-specific logistic regression results, adjusted for age, sex, principal components of genetic ancestry, and/or study specific factors (as relevant) were combined using fixed-effect meta-analyses to evaluate the association between each SNP and colorectal cancer risk. A Bonferroni-corrected p value of 2.92×10(-4) was used to determine statistical significance of the associations.
RESULTS - Two correlated SNPs--rs10090154 and rs4242382--in Region 1 of chromosome 8q24, a prostate cancer susceptibility region, demonstrated statistically significant associations with colorectal cancer risk. The most significant association was observed with rs4242382 (meta-analysis OR=1.12; 95% CI 1.07 to 1.18; p=1.74×10(-5)), which also demonstrated similar associations across racial/ethnic populations and anatomical sub-sites.
CONCLUSIONS - This is the first study to clearly demonstrate Region 1 of chromosome 8q24 as a susceptibility locus for colorectal cancer; thus, adding colorectal cancer to the list of cancer sites linked to this particular multicancer risk region at 8q24.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Genome-wide analysis of copy number variation in type 1 diabetes.
Grayson BL, Smith ME, Thomas JW, Wang L, Dexheimer P, Jeffrey J, Fain PR, Nanduri P, Eisenbarth GS, Aune TM
(2010) PLoS One 5: e15393
MeSH Terms: Adult, Chromosome Deletion, Chromosomes, Human, Pair 13, Chromosomes, Human, Pair 2, Chromosomes, Human, Pair 6, Chromosomes, Human, Pair 7, Chromosomes, Human, Pair 8, Cohort Studies, DNA Copy Number Variations, Diabetes Mellitus, Type 1, Gene Deletion, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Risk Factors, Twins, Monozygotic
Show Abstract · Added December 10, 2013
Type 1 diabetes (T1D) tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs). We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl) cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D.
1 Communities
1 Members
0 Resources
20 MeSH Terms
The effect of a novel intergenic polymorphism (rs11774572) on HDL-cholesterol concentrations depends on TaqIB polymorphism in the cholesterol ester transfer protein gene.
Junyent M, Lee YC, Smith CE, Arnett DK, Tsai MY, Kabagambe EK, Straka RJ, Province M, An P, Lai CQ, Parnell LD, Shen J, Borecki I, Ordovas JM
(2010) Nutr Metab Cardiovasc Dis 20: 34-40
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Cholesterol Ester Transfer Proteins, Cholesterol, HDL, Chromosomes, Human, Pair 8, DNA, Intergenic, Female, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Hypertriglyceridemia, Insulin Resistance, Linkage Disequilibrium, Lipoproteins, Male, Metabolic Syndrome, Middle Aged, Particle Size, Polymorphism, Single Nucleotide, United States, Young Adult
Show Abstract · Added April 24, 2015
BACKGROUND AND AIMS - Several genes have been shown to individually affect plasma lipoprotein metabolism in humans. Studies on gene-gene interactions could offer more insight into how genes affect lipid metabolism and may be useful in predicting lipid concentrations. We tested for gene-gene interactions between TaqIB SNP in the cholesterol ester transfer protein (CETP) and three novel single nucleotide polymorphisms (SNPs), namely rs11774572, rs7819412 and rs6995374 for their effect on metabolic syndrome (MetS) components and related traits.
METHODS AND RESULTS - The aforementioned SNPs were genotyped in 1002 subjects who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. Lipids were measured by standard procedures and lipoprotein subfractions, by proton nuclear magnetic resonance spectroscopy. Polymorphism rs11774572 was significantly associated with MetS (P=0.020), mainly driven by the association of the C allele with lower HDL-C (P=0.043) and higher triglycerides (P=0.049) and insulin (P=0.040) concentrations than TT subjects. A significant interaction between SNPs rs11774572 and CETP-TaqIB SNPs was found for HDL-C concentrations (P=0.006) and for HDL (P=0.008) and LDL particle sizes (P=0.009), small LDL (P=0.004), and VLDL concentrations (P=0.021), in which TT homozygotes displayed higher HDL-C concentrations and for HDL and LDL particle sizes, and lower small LDL and VLDL concentrations than C carriers, if they were CETP B2 allele carriers (P values ranging from <0.001 to 0.001).
CONCLUSIONS - The rs11774572 polymorphism may play a role in the dyslipidemia that characterizes MetS. The interaction between rs11774572 and CETP-TaqIB SNPs on HDL-C concentrations provides some insights into the underlying mechanisms.
Copyright 2009 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system.
Jin M, Goldenring JR
(2006) Biochim Biophys Acta 1759: 281-95
MeSH Terms: Adaptor Proteins, Signal Transducing, Alternative Splicing, Amino Acid Sequence, Animals, Antibody Specificity, Base Sequence, Binding Sites, Carrier Proteins, Cell Membrane, Chromosomes, Human, Pair 8, Cloning, Molecular, DNA, Complementary, Female, Gene Expression, Green Fluorescent Proteins, HeLa Cells, Humans, Male, Membrane Proteins, Molecular Sequence Data, Open Reading Frames, Pregnancy, Protein Structure, Tertiary, RNA, Messenger, Rabbits, Recombinant Fusion Proteins, Sequence Homology, Amino Acid, Tissue Distribution, Transfection, Transferrin, Two-Hybrid System Techniques
Show Abstract · Added October 7, 2013
Rab11a is a member of the Rab11 small GTPase family, and plays an important role in plasma membrane recycling. Rab11-Family Interacting Protein 1 (Rab11-FIP1) binds to Rab11 through a carboxyl-terminal amphipathic alpha helix. We have identified eight alternatively spliced Rab11-FIP1 gene transcripts from human chromosome 8. Among them, Rab11-FIP1A-D have carboxyl terminal Rab11 binding domains, while Rab11-FIP1E-H do not contain the Rab11 binding domain. While Rab11-FIP1B and F gene transcripts are ubiquitous, other Rab11-FIP1 transcripts demonstrate more limited patterns of expression in human tissue cDNAs. EGFP-Rab11-FIP1A-D proteins over-expressed in HeLa cells targeted to Rab11a-containing membranes, while EGFP-Rab11-FIP1E/F and H proteins did not localize with recycling system membranes. However, transferrin trafficking was not significantly altered in HeLa cells over-expressing expressing any of the EGFP-Rab11-FIP1 proteins. Rabbit polyclonal antibodies specific for Rab11-FIP1B and Rab11-FIP1C/RCP demonstrated that Rab11-FIP1B and Rab11-FIP1C/RCP are expressed endogenously. Strikingly, endogenous staining for Rab11-FIP1C/RCP only partially co-localized with EGFP-Rab11-FIP1A, EGFP-Rab11-FIP1B, and EGFP-Rab11a in the perinuclear region, indicating that Rab11-FIP1C/RCP resides in a differentiable subcellular compartment within the plasma membrane recycling system compared with Rab11-FIP1A and Rab11-FIP1B. These data suggest that Rab11-FIP1 proteins may play coordinated roles in regulating plasma membrane recycling with regional specificity within the Rab11a-containing recycling system.
1 Communities
1 Members
0 Resources
31 MeSH Terms
Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein.
Yang G, Thompson MA, Brandt SJ, Hiebert SW
(2007) Oncogene 26: 91-101
MeSH Terms: Cell Line, Tumor, Chromosomes, Human, Pair 21, Chromosomes, Human, Pair 8, Core Binding Factor Alpha 2 Subunit, DNA-Binding Proteins, Enzyme Inhibitors, Histone Deacetylase Inhibitors, Humans, Hydrolysis, Immunoprecipitation, Proto-Oncogene Proteins, RUNX1 Translocation Partner 1 Protein, Transcription Factors, Translocation, Genetic
Show Abstract · Added March 5, 2014
The t(8;21) chromosomal translocation that generates the fusion oncoprotein RUNX1-ETO predominates in leukemia patients of the French-American-British (FAB) class M2 subtype. The oncoprotein has the capacity to promote expansion of hematopoietic stem/progenitor cells and induces leukemia in association with other genetic alterations. Here, we show that RUNX1-ETO undergoes degradation in response to treatment with histone deacetylase inhibitors, one of which, depsipeptide (DEP), is currently undergoing phase II clinical testing in a variety of malignancies. These compounds induce turnover of RUNX1-ETO without affecting the stability of RUNX1-ETO partner proteins. In addition, RUNX1-ETO physically interacts with heat shock protein 90 (HSP90). DEP treatment interrupts the association of RUNX1-ETO with HSP90 and induces proteasomal degradation of RUNX1-ETO. DEP and the HSP90 antagonist 17-allylamino-geldanamycin (17-AAG) both triggered RUNX1-ETO degradation, but without any additive or cooperative effects. These findings may stimulate the development of more rational and effective approaches for treating t(8;21) patients using histone deacetylase inhibitors or HSP90 inhibitors.
0 Communities
3 Members
0 Resources
14 MeSH Terms
Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample.
Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C, Buccola NG, Hale N, Weilbaecher AN, Nertney DA, Olincy A, Green S, Schaffer AW, Smith CJ, Hannah DE, Rice JP, Cox NJ, Martinez M, Mowry BJ, Amin F, Silverman JM, Black DW, Byerley WF, Crowe RR, Freedman R, Cloninger CR, Levinson DF, Gejman PV
(2006) Am J Hum Genet 78: 315-33
MeSH Terms: Adolescent, Adult, African Americans, Chromosome Mapping, Chromosomes, Human, Pair 11, Chromosomes, Human, Pair 8, European Continental Ancestry Group, Female, Genetic Linkage, Genetic Predisposition to Disease, Genome, Human, Humans, Male, Nerve Tissue Proteins, Neuregulin-1, Pedigree, Schizophrenia
Show Abstract · Added February 22, 2016
We report the clinical characteristics of a schizophrenia sample of 409 pedigrees--263 of European ancestry (EA) and 146 of African American ancestry (AA)--together with the results of a genome scan (with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia (SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs (ASPs) (279 EA and 124 AA) and 100 all-possible half-sibling ASPs (15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 (empirical Z likelihood-ratio score [Z(lr)] threshold >/=2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >2.0 in 8p were observed from 30.7 cM to 61.7 cM (Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 (equivalent Kong-Cox LOD of 2.30) near D8S1771 (at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 (NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein.
Yang G, Khalaf W, van de Locht L, Jansen JH, Gao M, Thompson MA, van der Reijden BA, Gutmann DH, Delwel R, Clapp DW, Hiebert SW
(2005) Mol Cell Biol 25: 5869-79
MeSH Terms: Animals, Chromosomes, Human, Pair 21, Chromosomes, Human, Pair 8, Core Binding Factor Alpha 2 Subunit, DNA-Binding Proteins, Down-Regulation, Genes, Reporter, Granulocyte-Macrophage Colony-Stimulating Factor, Humans, Leukemia, Myeloid, Acute, Mice, Neurofibromatosis 1, Neurofibromin 1, Oncogene Proteins, Fusion, Promoter Regions, Genetic, Proto-Oncogene Proteins, RUNX1 Translocation Partner 1 Protein, Repressor Proteins, Transcription Factors, Transcription, Genetic, Translocation, Genetic
Show Abstract · Added March 5, 2014
Von Recklinghausen's disease is a relatively common familial genetic disorder characterized by inactivating mutations of the Neurofibromatosis-1 (NF1) gene that predisposes these patients to malignancies, including an increased risk for juvenile myelomonocytic leukemia. However, NF1 mutations are not common in acute myeloid leukemia (AML). Given that the RUNX1 transcription factor is the most common target for chromosomal translocations in acute leukemia, we asked if NF1 might be regulated by RUNX1. In reporter assays, RUNX1 activated the NF1 promoter and cooperated with C/EBPalpha and ETS2 to activate the NF1 promoter over 80-fold. Moreover, the t(8;21) fusion protein RUNX1-MTG8 (R/M), which represses RUNX1-regulated genes, actively repressed the NF1 promoter. R/M associated with the NF1 promoter in vivo and repressed endogenous NF1 gene expression. In addition, similar to loss of NF1, R/M expression enhanced the sensitivity of primary myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor. Our results indicate that the NF1 tumor suppressor gene is a direct transcriptional target of RUNX1 and the t(8;21) fusion protein, suggesting that suppression of NF1 expression contributes to the molecular pathogenesis of AML.
0 Communities
1 Members
0 Resources
21 MeSH Terms