Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 38

Publication Record

Connections

Genome-wide association study confirms lung cancer susceptibility loci on chromosomes 5p15 and 15q25 in an African-American population.
Zanetti KA, Wang Z, Aldrich M, Amos CI, Blot WJ, Bowman ED, Burdette L, Cai Q, Caporaso N, Chung CC, Gillanders EM, Haiman CA, Hansen HM, Henderson BE, Kolonel LN, Marchand LL, Li S, McNeill LH, Ryan BM, Schwartz AG, Sison JD, Spitz MR, Tucker M, Wenzlaff AS, Wiencke JK, Wilkens L, Wrensch MR, Wu X, Zheng W, Zhou W, Christiani D, Palmer JR, Penning TM, Rieber AG, Rosenberg L, Ruiz-Narvaez EA, Su L, Vachani A, Wei Y, Whitehead AS, Chanock SJ, Harris CC
(2016) Lung Cancer 98: 33-42
MeSH Terms: African Americans, Case-Control Studies, Chromosomes, Human, Pair 15, Chromosomes, Human, Pair 5, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Lung Neoplasms, Polymorphism, Single Nucleotide, Population Surveillance, Quantitative Trait Loci
Show Abstract · Added April 3, 2018
OBJECTIVES - Genome-wide association studies (GWAS) of lung cancer have identified regions of common genetic variation with lung cancer risk in Europeans who smoke and never-smoking Asian women. This study aimed to conduct a GWAS in African Americans, who have higher rates of lung cancer despite smoking fewer cigarettes per day when compared with Caucasians. This population provides a different genetic architecture based on underlying African ancestry allowing the identification of new regions and exploration of known regions for finer mapping.
MATERIALS AND METHODS - We genotyped 1,024,001 SNPs in 1737 cases and 3602 controls in stage 1, followed by a replication phase of 20 SNPs (p<1.51×10(-5)) in an independent set of 866 cases and 796 controls in stage 2.
RESULTS AND CONCLUSION - In the combined analysis, we confirmed two loci to be associated with lung cancer that achieved the threshold of genome-wide significance: 15q25.1 marked by rs2036527 (p=1.3×10(-9); OR=1.32; 95% CI=1.20-1.44) near CHRNA5, and 5p15.33 marked by rs2853677 (p=2.8×10(-9); OR=1.28; 95% CI=1.18-1.39) near TERT. The association with rs2853677 is driven by the adenocarcinoma subtype of lung cancer (p=1.3×10(-8); OR=1.37; 95% CI=1.23-1.54). No SNPs reached genome-wide significance for either of the main effect models examining smoking - cigarettes per day and current or former smoker. Our study was powered to identify strong risk loci for lung cancer in African Americans; we confirmed results previously reported in African Americans and other populations for two loci near plausible candidate genes, CHRNA5 and TERT, on 15q25.1 and 5p15.33 respectively, are associated with lung cancer. Additional work is required to map and understand the biological underpinnings of the strong association of these loci with lung cancer risk in African Americans.
Published by Elsevier Ireland Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
Admixture mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in African Americans.
Velez Edwards DR, Tsosie KS, Williams SM, Edwards TL, Russell SB
(2014) Hum Genet 133: 1513-23
MeSH Terms: African Americans, Case-Control Studies, Chromosome Mapping, Chromosomes, Human, Pair 15, Exome, Female, Gene Frequency, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Humans, Keloid, Male, Polymorphism, Single Nucleotide
Show Abstract · Added February 12, 2015
Keloids are benign dermal tumors that occur ~20 times more often in African versus Caucasian descent individuals. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and the large differences in risk among populations. Yet, no well-established genetic risk factors for keloids have been identified. In this study, we conducted admixture mapping and whole-exome association using 478 African Americans (AAs) samples (122 cases, 356 controls) with exome genotyping data to identify regions where local ancestry associated with keloid risk. Logistic regression was used to evaluate associations under admixture peaks. A significant mapping peak was observed on chr15q21.2-22.3. This peak included NEDD4, a gene previously implicated in a keloid genome-wide association study (GWAS) of Japanese individuals later validated in a Chinese cohort. While we observed modest evidence for association with NEDD4, a more significant association was observed at (myosin 1E) MYO1E. A genome scan not including the 15q21-22 region also identified associations at MYO7A (rs35641839, odds ratio [OR] = 4.71, 95% confidence interval [CI] 2.38-9.32, p = 8.34 × 10(-6)) at 11q13.5. The identification of SNPs in two myosin genes strongly associated with keloid formation suggests that an altered cytoskeleton contributes to the enhanced migratory and invasive properties of keloid fibroblasts. Our findings support the admixture mapping approach for the study of keloid risk, and indicate potentially common genetic elements on chr15q21.2-22.3 in causation of keloids in AAs, Japanese, and Chinese populations.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1.
Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, Shi J, Long J, Wen W, Choi JY, Noh DY, Shen CY, Matsuo K, Teo SH, Kim MK, Khoo US, Iwasaki M, Hartman M, Takahashi A, Ashikawa K, Matsuda K, Shin MH, Park MH, Zheng Y, Xiang YB, Ji BT, Park SK, Wu PE, Hsiung CN, Ito H, Kasuga Y, Kang P, Mariapun S, Ahn SH, Kang HS, Chan KY, Man EP, Iwata H, Tsugane S, Miao H, Liao J, Nakamura Y, Kubo M, DRIVE GAME-ON Consortium, Delahanty RJ, Zhang Y, Li B, Li C, Gao YT, Shu XO, Kang D, Zheng W
(2014) Nat Genet 46: 886-90
MeSH Terms: Adult, Asian Continental Ancestry Group, Breast Neoplasms, Case-Control Studies, Chromosomes, Human, Pair 1, Chromosomes, Human, Pair 15, Chromosomes, Human, Pair 5, European Continental Ancestry Group, Far East, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Middle Aged, Risk
Show Abstract · Added January 23, 2015
In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.
Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VH, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe AD, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen R, Wu J, Lim WY, Chen KC, Chow WH, Ji BT, Chan JK, Chu M, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu T, Wu YL, Yang PC, Zhou B, Shin MH, Fraumeni JF, Lin D, Chanock SJ, Rothman N
(2012) Nat Genet 44: 1330-5
MeSH Terms: Adenocarcinoma, Adenocarcinoma of Lung, Adult, Aged, Asian Continental Ancestry Group, Carcinoma, Squamous Cell, Chromosomes, Human, Pair 10, Chromosomes, Human, Pair 15, Chromosomes, Human, Pair 17, Chromosomes, Human, Pair 5, Chromosomes, Human, Pair 6, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Lung Neoplasms, Middle Aged, Polymorphism, Single Nucleotide, Smoking
Show Abstract · Added September 3, 2013
To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking.
0 Communities
3 Members
0 Resources
20 MeSH Terms
Genome-wide meta-analyses of smoking behaviors in African Americans.
David SP, Hamidovic A, Chen GK, Bergen AW, Wessel J, Kasberger JL, Brown WM, Petruzella S, Thacker EL, Kim Y, Nalls MA, Tranah GJ, Sung YJ, Ambrosone CB, Arnett D, Bandera EV, Becker DM, Becker L, Berndt SI, Bernstein L, Blot WJ, Broeckel U, Buxbaum SG, Caporaso N, Casey G, Chanock SJ, Deming SL, Diver WR, Eaton CB, Evans DS, Evans MK, Fornage M, Franceschini N, Harris TB, Henderson BE, Hernandez DG, Hitsman B, Hu JJ, Hunt SC, Ingles SA, John EM, Kittles R, Kolb S, Kolonel LN, Le Marchand L, Liu Y, Lohman KK, McKnight B, Millikan RC, Murphy A, Neslund-Dudas C, Nyante S, Press M, Psaty BM, Rao DC, Redline S, Rodriguez-Gil JL, Rybicki BA, Signorello LB, Singleton AB, Smoller J, Snively B, Spring B, Stanford JL, Strom SS, Swan GE, Taylor KD, Thun MJ, Wilson AF, Witte JS, Yamamura Y, Yanek LR, Yu K, Zheng W, Ziegler RG, Zonderman AB, Jorgenson E, Haiman CA, Furberg H
(2012) Transl Psychiatry 2: e119
MeSH Terms: Adult, African Americans, Aged, Chromosomes, Human, Pair 10, Chromosomes, Human, Pair 15, Female, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, Proteoglycans, Receptors, Nicotinic, Smoking, Statistics as Topic
Show Abstract · Added March 20, 2014
The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n = 32,389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β = 0.040, s.e. = 0.007, P = 1.84 × 10(-8)). This variant is present in the 5'-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.
Shervais S, Kramer PL, Westaway SK, Cox NJ, Zwick M
(2010) Stat Appl Genet Mol Biol 9: Article18
MeSH Terms: Algorithms, Bayes Theorem, Biostatistics, Case-Control Studies, Chromosomes, Human, Pair 15, Chromosomes, Human, Pair 2, Computer Simulation, Databases, Genetic, Diabetes Mellitus, Type 2, Disease, Epistasis, Genetic, Genes, Genomics, Humans, Inheritance Patterns, Linear Models, Logistic Models, Models, Genetic, Models, Statistical, Penetrance, Polymorphism, Single Nucleotide
Show Abstract · Added February 22, 2016
There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism.
Delahanty RJ, Kang JQ, Brune CW, Kistner EO, Courchesne E, Cox NJ, Cook EH, Macdonald RL, Sutcliffe JS
(2011) Mol Psychiatry 16: 86-96
MeSH Terms: Autistic Disorder, Chromosomes, Human, Pair 15, Female, Genome-Wide Association Study, Germ-Line Mutation, Humans, Male, Pedigree, Polymorphism, Single Nucleotide, Receptors, GABA-A
Show Abstract · Added February 20, 2014
Maternal 15q11-q13 duplication is the most common copy number variant in autism, accounting for ∼1-3% of cases. The 15q11-q13 region is subject to epigenetic regulation, and genomic copy number losses and gains cause genomic disorders in a parent-of-origin-specific manner. One 15q11-q13 locus encodes the GABA(A) receptor β3 subunit gene (GABRB3), which has been implicated by several studies in both autism and absence epilepsy, and the co-morbidity of epilepsy in autism is well established. We report that maternal transmission of a GABRB3 signal peptide variant (P11S), previously implicated in childhood absence epilepsy, is associated with autism. An analysis of wild-type and mutant β3 subunit-containing α1β3γ2 or α3β3γ2 GABA(A) receptors shows reduced whole-cell current and decreased β3 subunit protein on the cell surface due to impaired intracellular β3 subunit processing. We thus provide the first evidence of an association between a specific GABA(A) receptor defect and autism, direct evidence that this defect causes synaptic dysfunction that is autism relevant and the first maternal risk effect in the 15q11-q13 autism duplication region that is linked to a coding variant.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Genome-wide linkage analyses of quantitative and categorical autism subphenotypes.
Liu XQ, Paterson AD, Szatmari P, Autism Genome Project Consortium
(2008) Biol Psychiatry 64: 561-70
MeSH Terms: Autistic Disorder, Child, Chromosomes, Human, Pair 11, Chromosomes, Human, Pair 15, Female, Genetic Linkage, Genetic Markers, Genome-Wide Association Study, Humans, Interpersonal Relations, Male, Phenotype, Verbal Behavior
Show Abstract · Added February 20, 2014
BACKGROUND - The search for susceptibility genes in autism and autism spectrum disorders (ASD) has been hindered by the possible small effects of individual genes and by genetic (locus) heterogeneity. To overcome these obstacles, one method is to use autism-related subphenotypes instead of the categorical diagnosis of autism since they may be more directly related to the underlying susceptibility loci. Another strategy is to analyze subsets of families that meet certain clinical criteria to reduce genetic heterogeneity.
METHODS - In this study, using 976 multiplex families from the Autism Genome Project consortium, we performed genome-wide linkage analyses on two quantitative subphenotypes, the total scores of the reciprocal social interaction domain and the restricted, repetitive, and stereotyped patterns of behavior domain from the Autism Diagnostic Interview-Revised. We also selected subsets of ASD families based on four binary subphenotypes, delayed onset of first words, delayed onset of first phrases, verbal status, and IQ > or = 70.
RESULTS - When the ASD families with IQ > or = 70 were used, a logarithm of odds (LOD) score of 4.01 was obtained on chromosome 15q13.3-q14, which was previously linked to schizophrenia. We also obtained a LOD score of 3.40 on chromosome 11p15.4-p15.3 using the ASD families with delayed onset of first phrases. No significant evidence for linkage was obtained for the two quantitative traits.
CONCLUSIONS - This study demonstrates that selection of informative subphenotypes to define a homogeneous set of ASD families could be very important in detecting the susceptibility loci in autism.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Transmission disequilibrium testing of the chromosome 15q11-q13 region in autism.
Kim SJ, Brune CW, Kistner EO, Christian SL, Courchesne EH, Cox NJ, Cook EH
(2008) Am J Med Genet B Neuropsychiatr Genet 147B: 1116-25
MeSH Terms: Autistic Disorder, Child, Child, Preschool, Chromosomes, Human, Pair 15, Female, Gene Regulatory Networks, Genetic Predisposition to Disease, Genomic Imprinting, Genotype, Humans, Linkage Disequilibrium, Male, Phenotype, Polymorphism, Single Nucleotide, Receptors, GABA-A, Serotonin Plasma Membrane Transport Proteins
Show Abstract · Added February 22, 2016
Evidence implicates the serotonin transporter gene (SLC6A4) and the 15q11-q13 genes as candidates for autism as well as restricted repetitive behavior (RRB). We conducted dense transmission disequilibrium mapping of the 15q11-q13 region with 93 single nucleotide polymorphisms (SNPs) in 86 strictly defined autism trios and tested association between SNPs and autism using the transmission disequilibrium test (TDT). As exploratory analyses, parent-of-origin effects were examined using likelihood-ratio tests (LRTs) and genotype-phenotype associations for specific RRB using the Family-Based Association Test (FBAT). Additionally, gene-gene interactions between nominally associated 15q11-q13 variants and 5-HTTLPR, the common length polymorphism of SLC6A4, were examined using conditional logistic regression (CLR). TDT revealed nominally significant transmission disequilibrium between autism and five SNPs, three of which are located within close proximity of the GABA(A) receptor subunit gene clusters. Three SNPs in the SNRPN/UBE3A region had marginal imprinting effects. FBAT for genotype-phenotype relations revealed nominally significant association between two SNPs and one ADI-R subdomain item. However, both TDT and FBAT were not statistically significant after correcting for multiple comparisons. Gene-gene interaction analyses by CLR revealed additive genetic effect models, without interaction terms, fit the data best. Lack of robust association between the 15q11-q13 SNPs and RRB phenotypes may be due to a small sample size and absence of more specific RRB measurement. Further investigation of the 15q11-q13 region with denser genotyping in a larger sample set may be necessary to determine whether this region confers risk to autism, indicated by association, or to specific autism phenotypes.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Genetic studies of stuttering in a founder population.
Wittke-Thompson JK, Ambrose N, Yairi E, Roe C, Cook EH, Ober C, Cox NJ
(2007) J Fluency Disord 32: 33-50
MeSH Terms: Child, Chromosomes, Human, Pair 13, Chromosomes, Human, Pair 15, Chromosomes, Human, Pair 3, Genetic Linkage, Genotype, Humans, Pedigree, Population Surveillance, Stuttering
Show Abstract · Added February 22, 2016
UNLABELLED - Genome-wide linkage and association analyses were conducted to identify genetic determinants of stuttering in a founder population in which 48 individuals affected with stuttering are connected in a single 232-person genealogy. A novel approach was devised to account for all necessary relationships to enable multipoint linkage analysis. Regions with nominal evidence for linkage were found on chromosomes 3 (P=0.013, 208.8 centiMorgans (cM)), 13 (P=0.012, 52.6 cM), and 15 (P=0.02, 100 cM). Regions with nominal evidence for association with stuttering that overlapped with a linkage signal are located on chromosomes 3 (P=0.0047, 195 cM), 9 (P=0.0067, 46.5 cM), and 13 (P=0.0055, 52.6 cM). We also conducted the first meta-analysis for stuttering using results from linkage studies in the Hutterites and The Illinois International Genetics of Stuttering Project and identified regions with nominal evidence for linkage on chromosomes 2 (P=0.013, 180-195 cM) and 5 (P=0.0051, 105-120 cM; P=0.015, 120-135 cM). None of the linkage signals detected in the Hutterite sample alone, or in the meta-analysis, meet genome-wide criteria for significance, although some of the stronger signals overlap linkage mapping signals previously reported for other speech and language disorders.
EDUCATIONAL OBJECTIVES - After reading this article, the reader will be able to: (1) summarize information about the background of common disorders and methodology of genetic studies; (2) evaluate the role of genetics in stuttering; (3) discuss the value of using founder populations in genetic studies; (4) articulate the importance of combining several studies in a meta-analysis; (5) discuss the overlap of genetic signals identified in stuttering with other speech and language disorders.
0 Communities
1 Members
0 Resources
10 MeSH Terms