Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 2 of 2

Publication Record

Connections

Systemic bile acids induce insulin resistance in a TGR5-independent manner.
Syring KE, Cyphert TJ, Beck TC, Flynn CR, Mignemi NA, McGuinness OP
(2019) Am J Physiol Endocrinol Metab 316: E782-E793
MeSH Terms: Animals, Bile Acids and Salts, Cholagogues and Choleretics, Cholic Acids, Deoxycholic Acid, Gene Expression Profiling, Gluconeogenesis, Glucose Clamp Technique, Hep G2 Cells, Hepatocytes, Humans, Insulin Resistance, Liver, Mice, Mice, Knockout, Obesity, Primary Cell Culture, Receptors, G-Protein-Coupled, Taurocholic Acid
Show Abstract · Added April 15, 2019
Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Associations between circulating 1,25(OH)₂D concentration and odds of metachronous colorectal adenoma.
Hibler EA, Molmenti CL, Lance P, Jurutka PW, Jacobs ET
(2014) Cancer Causes Control 25: 809-17
MeSH Terms: Adenoma, Adult, Aged, Aged, 80 and over, Calcitriol, Cholagogues and Choleretics, Colorectal Neoplasms, Double-Blind Method, Female, Humans, Male, Middle Aged, Odds Ratio, Risk Factors, Ursodeoxycholic Acid
Show Abstract · Added December 29, 2014
Cellular-level studies demonstrate that the availability of the secosteroid hormone 1α,25-dihydroxyvitamin D [1,25(OH)2D] to colon cells promotes anti-carcinogenic activities. Although epidemiological data are relatively sparse, suggestive inverse trends have been reported between circulating 1,25(OH)2D concentration and colorectal neoplasia. We therefore sought to evaluate the relationship between circulating 1,25(OH)2D concentrations and odds for metachronous colorectal adenomas among 1,151 participants from a randomized trial of ursodeoxycholic acid for colorectal adenoma prevention. No relationship between 1,25(OH)2D and overall odds for metachronous lesions was observed, with ORs (95% CIs) of 0.80 (0.60-1.07) and 0.81 (0.60-1.10) for participants in the second and third tertiles, respectively, compared with those in the lowest (p-trend = 0.17). However, a statistically significant inverse association was observed between circulating 1,25(OH)2D concentration and odds of proximal metachronous adenoma, with an OR (95% CI) of 0.71 (0.52-0.98) for individuals in the highest tertile of 1,25(OH)2D compared with those in the lowest (p-trend = 0.04). While there was no relationship overall between 1,25(OH)2D and metachronous distal lesions, there was a significantly reduced odds for women, but not men, in the highest 1,25(OH)2D tertile compared with the lowest (OR 0.53; 95% CI 0.27-1.03; p-trend = 0.05; p-interaction = 0.08). The observed differences in associations with proximal and distal adenomas could indicate that delivery and activity of vitamin D metabolites in different anatomic sites in the colorectum varies, particularly by gender. These results identify novel associations between 1,25(OH)2D and metachronous proximal and distal colorectal adenoma, and suggest that future studies are needed to ascertain potential mechanistic differences in 1,25(OH)2D action in the colorectum.
0 Communities
1 Members
0 Resources
15 MeSH Terms