Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 245

Publication Record

Connections

Biased M receptor-positive allosteric modulators reveal role of phospholipase D in M-dependent rodent cortical plasticity.
Moran SP, Xiang Z, Doyle CA, Maksymetz J, Lv X, Faltin S, Fisher NM, Niswender CM, Rook JM, Lindsley CW, Conn PJ
(2019) Sci Signal 12:
MeSH Terms: Allosteric Site, Animals, CHO Cells, Calcium, Cerebral Cortex, Cognition, Cricetinae, Cricetulus, Electrophysiology, Female, Humans, Long-Term Synaptic Depression, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neuronal Plasticity, Phospholipase D, Prefrontal Cortex, Receptor, Muscarinic M1, Signal Transduction, Type C Phospholipases
Show Abstract · Added March 3, 2020
Highly selective, positive allosteric modulators (PAMs) of the M subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M receptor signaling in native systems, and it is not clear whether biased M PAMs display differences in modulating M-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M-dependent LTD in the PFC. In contrast, biased and nonbiased M PAMs acted similarly in potentiating M-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M PAMs to modulate certain central nervous system (CNS) functions and that biased M PAMs function differently in brain regions implicated in cognition.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
2 Members
0 Resources
22 MeSH Terms
7T quantitative magnetization transfer (qMT) of cortical gray matter in multiple sclerosis correlates with cognitive impairment.
McKeithan LJ, Lyttle BD, Box BA, O'Grady KP, Dortch RD, Conrad BN, Thompson LM, Rogers BP, Newhouse P, Pawate S, Bagnato F, Smith SA
(2019) Neuroimage 203: 116190
MeSH Terms: Adult, Cerebral Cortex, Cognitive Dysfunction, Female, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Multiple Sclerosis, Young Adult
Show Abstract · Added March 3, 2020
Cognitive impairment (CI) is a major manifestation of multiple sclerosis (MS) and is responsible for extensively hindering patient quality of life. Cortical gray matter (cGM) damage is a significant contributor to CI, but is poorly characterized by conventional MRI let alone with quantitative MRI, such as quantitative magnetization transfer (qMT). Here we employed high-resolution qMT at 7T via the selective inversion recovery (SIR) method, which provides tissue-specific indices of tissue macromolecular content, such as the pool size ratio (PSR) and the rate of MT exchange (kmf). These indices could represent expected demyelination that occurs in the presence of gray matter damage. We utilized selective inversion recovery (SIR) qMT which provides a low SAR estimate of macromolecular-bulk water interactions using a tailored, B1 and B0 robust inversion recovery (IR) sequence acquired at multiple inversion times (TI) at 7T and fit to a two-pool model of magnetization exchange. Using this sequence, we evaluated qMT indices across relapsing-remitting multiple sclerosis patients (N = 19) and healthy volunteers (N = 37) and derived related associations with neuropsychological measures of cognitive impairment. We found a significant reduction in k in cGM of MS patients (15.5%, p = 0.002), unique association with EDSS (ρ = -0.922, p = 0.0001), and strong correlation with cognitive performance (ρ = -0.602, p = 0.0082). Together these findings indicate that the rate of MT exchange (k) may be a significant biomarker of cGM damage relating to CI in MS.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
12 MeSH Terms
Functional Connectivity of the Striatum in Schizophrenia and Psychotic Bipolar Disorder.
Karcher NR, Rogers BP, Woodward ND
(2019) Biol Psychiatry Cogn Neurosci Neuroimaging 4: 956-965
MeSH Terms: Adult, Affective Disorders, Psychotic, Bipolar Disorder, Cerebral Cortex, Connectome, Corpus Striatum, Female, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Prefrontal Cortex, Psychotic Disorders, Putamen, Schizophrenia, Young Adult
Show Abstract · Added January 31, 2020
BACKGROUND - The striatum is abnormal in schizophrenia and possibly represents a common neurobiological mechanism underlying psychotic disorders. Resting-state functional magnetic resonance imaging studies have not reached a consensus regarding striatal dysconnectivity in schizophrenia, although these studies generally find impaired frontoparietal and salience network connectivity. The goal of the current study was to clarify the pattern of corticostriatal connectivity, including whether corticostriatal dysconnectivity is transdiagnostic and extends into psychotic bipolar disorder.
METHODS - We examined corticostriatal functional connectivity in 60 healthy subjects and 117 individuals with psychosis, including 77 with a schizophrenia spectrum illness and 40 with psychotic bipolar disorder. We conducted a cortical seed-based region-of-interest analysis with follow-up voxelwise analysis for any significant results. Further, a striatum seed-based analysis was conducted to examine group differences in connectivity between the striatum and the whole cortex.
RESULTS - Cortical region-of-interest analysis indicated that overall connectivity of the salience network with the striatum was reduced in psychotic disorders, which follow-up voxelwise analysis localized to the left putamen. Striatum seed-based analyses showed reduced ventral rostral putamen connectivity with the salience network portion of the medial prefrontal cortex in both schizophrenia and psychotic bipolar disorder.
CONCLUSIONS - The current study found evidence of transdiagnostic corticostriatal dysconnectivity in both schizophrenia and psychotic bipolar disorder, including reduced salience network connectivity, as well as reduced connectivity between the putamen and the medial prefrontal cortex. Overall, the current study points to the relative importance of salience network hypoconnectivity in psychotic disorders.
Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Irritability and brain volume in adolescents: cross-sectional and longitudinal associations.
Dennis EL, Humphreys KL, King LS, Thompson PM, Gotlib IH
(2019) Soc Cogn Affect Neurosci 14: 687-698
MeSH Terms: Adolescent, Brain, Cerebral Cortex, Child, Cross-Sectional Studies, Female, Humans, Irritable Mood, Longitudinal Studies, Magnetic Resonance Imaging, Male, Stress, Psychological, Young Adult
Show Abstract · Added March 3, 2020
Irritability is garnering increasing attention in psychiatric research as a transdiagnostic marker of both internalizing and externalizing disorders. These disorders often emerge during adolescence, highlighting the need to examine changes in the brain and in psychological functioning during this developmental period. Adolescents were recruited for a longitudinal study examining the effects of early life stress on the development of psychopathology. The 151 adolescents (73 M/78 F, average age = 11.5 years, standard deviation = 1.1) were scanned with a T1-weighted MRI sequence and parents completed reports of adolescent irritability using the Affective Reactivity Index. Of these 151 adolescents, 94 (46 M/48 F) returned for a second session (average interval = 1.9 years, SD = 0.4). We used tensor-based morphometry to examine cross-sectional and longitudinal associations between irritability and regional brain volume. Irritability was associated with brain volume across a number of regions. More irritable individuals had larger hippocampi, insula, medial orbitofrontal cortex and cingulum/cingulate cortex and smaller putamen and internal capsule. Across the brain, more irritable individuals also had larger volume and less volume contraction in a number of areas that typically decrease in volume over the developmental period studied here, suggesting delayed maturation. These structural changes may increase adolescents' vulnerability for internalizing and externalizing disorders.
© The Author(s) 2019. Published by Oxford University Press.
0 Communities
1 Members
0 Resources
MeSH Terms
White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding.
Mota B, Dos Santos SE, Ventura-Antunes L, Jardim-Messeder D, Neves K, Kazu RS, Noctor S, Lambert K, Bertelsen MF, Manger PR, Sherwood CC, Kaas JH, Herculano-Houzel S
(2019) Proc Natl Acad Sci U S A 116: 15253-15261
MeSH Terms: Animals, Artiodactyla, Cerebral Cortex, Connectome, Gray Matter, Humans, Neurons, Organ Size, Organ Specificity, Primates, Rodentia, Scandentia, White Matter
Show Abstract · Added March 30, 2020
Because the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization. Instead, the ratio between volumes of gray and white matter is universally predicted by the same equation that predicts the degree of folding of the cerebral cortex, given the clade-specific scaling of cortical thickness, such that the volume of the gray matter (or the ratio of gray to total cortical volumes) divided by the square root of cortical thickness is a universal function of total cortical volume, regardless of the number of cortical neurons. Thus, the very mechanism that we propose to generate cortical folding also results in compactness of the white matter to a predictable degree across a wide variety of mammalian species.
0 Communities
1 Members
0 Resources
MeSH Terms
Improving human cortical sulcal curve labeling in large scale cross-sectional MRI using deep neural networks.
Parvathaneni P, Nath V, McHugo M, Huo Y, Resnick SM, Woodward ND, Landman BA, Lyu I
(2019) J Neurosci Methods 324: 108311
MeSH Terms: Adult, Aged, Aged, 80 and over, Anatomic Landmarks, Cerebral Cortex, Deep Learning, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Neuroimaging
Show Abstract · Added January 31, 2020
BACKGROUND - Human cortical primary sulci are relatively stable landmarks and commonly observed across the population. Despite their stability, the primary sulci exhibit phenotypic variability.
NEW METHOD - We propose a fully automated pipeline that integrates both sulcal curve extraction and labeling. In this study, we use a large normal control population (n = 1424) to train neural networks for accurately labeling the primary sulci. Briefly, we use sulcal curve distance map, surface parcellation, mean curvature and spectral features to delineate their sulcal labels. We evaluate the proposed method with 8 primary sulcal curves in the left and right hemispheres compared to an established multi-atlas curve labeling method.
RESULTS - Sulcal labels by the proposed method reasonably well agree with manual labeling. The proposed method outperforms the existing multi-atlas curve labeling method.
COMPARISON WITH EXISTING METHOD - Significantly improved sulcal labeling results are achieved with over 12.5 and 20.6 percent improvement on labeling accuracy in the left and right hemispheres, respectively compared to that of a multi-atlas curve labeling method in eight curves (p≪0.001, two-sample t-test).
CONCLUSION - The proposed method offers a computationally efficient and robust labeling of major sulci.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Characterization of the hemodynamic response function in white matter tracts for event-related fMRI.
Li M, Newton AT, Anderson AW, Ding Z, Gore JC
(2019) Nat Commun 10: 1140
MeSH Terms: Adult, Cerebral Cortex, Cerebrovascular Circulation, Female, Gray Matter, Healthy Volunteers, Hemodynamics, Hemoglobins, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Oxygen, Pattern Recognition, Visual, Stroop Test, White Matter
Show Abstract · Added March 26, 2019
Accurate estimates of the BOLD hemodynamic response function (HRF) are crucial for the interpretation and analysis of event-related functional MRI data. To date, however, there have been no comprehensive measurements of the HRF in white matter (WM) despite increasing evidence that BOLD signals in WM change after a stimulus. We performed an event-related cognitive task (Stroop color-word interference) to measure the HRF in selected human WM pathways. The task was chosen in order to produce robust, distributed centers of activity throughout the cortex. To measure the HRF in WM, fiber tracts were reconstructed between each pair of activated cortical areas. We observed clear task-specific HRFs with reduced magnitudes, delayed onsets and prolonged initial dips in WM tracts compared with activated grey matter, thus calling for significant changes to current standard models for accurately characterizing the HRFs in WM and for modifications of standard methods of analysis of functional imaging data.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Accelerated Aging of Functional Brain Networks Supporting Cognitive Function in Psychotic Disorders.
Sheffield JM, Rogers BP, Blackford JU, Heckers S, Woodward ND
(2019) Biol Psychiatry 86: 240-248
MeSH Terms: Adolescent, Adult, Aging, Cerebral Cortex, Cognition, Cognitive Dysfunction, Female, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Neuropsychological Tests, Parietal Lobe, Psychotic Disorders, Young Adult
Show Abstract · Added March 26, 2019
BACKGROUND - Across networks, connectivity within the frontoparietal network (FPN) and cingulo-opercular network (CON) exhibits reductions earliest during healthy aging, contributing to cognitive impairment. Individuals with psychotic disorders demonstrate evidence of accelerated aging across multiple biological systems. By leveraging a large sample of patients with psychosis from early to chronic illness stages, this study sought to determine whether the CON and FPN exhibit evidence of accelerated aging in psychotic disorders, confirm associations between network efficiency and cognition, and determine whether reduced network efficiency is observed in early-stage psychosis.
METHODS - Resting-state functional magnetic resonance imaging and cognitive data were obtained on 240 patients with psychotic disorder and 178 healthy control participants (HCs). Global efficiency, a measure of functional integration, was calculated for the CON, FPN, subcortical network, and visual network. Associations with age and cognition were assessed and compared between groups.
RESULTS - Consistent with accelerated aging, significant group by age interactions reflected significantly stronger relationships between efficiency and age in patients with psychosis than in HCs for both the CON (psychosis: r = -.37; HC: r = -.16) and FPN (psychosis: r = -.31; HC: r = -.05). Accelerated aging was not observed in either the subcortical or visual network, suggesting specificity for cognitive networks that decline earliest in healthy aging. Replicating prior findings, efficiency of both the CON and FPN correlated with cognitive function across all participants (rs > .11, ps < .031). Furthermore, patients with chronic psychosis (p = .004), but not patients with early psychosis (p = .553), exhibited significantly lower FPN efficiency compared with HCs.
CONCLUSIONS - Functional integration of higher-order cognitive networks is intact in early psychosis but exhibits evidence of accelerated aging, suggesting the potential for intervention targeting cognition within the early psychosis period.
Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
15 MeSH Terms
Cortical microcircuitry of performance monitoring.
Sajad A, Godlove DC, Schall JD
(2019) Nat Neurosci 22: 265-274
MeSH Terms: Animals, Brain Mapping, Cerebral Cortex, Electroencephalography, Female, Macaca, Male, Nerve Net, Neurons, Psychomotor Performance, Reaction Time, Saccades
Show Abstract · Added March 18, 2020
The medial frontal cortex enables performance monitoring, indexed by the error-related negativity (ERN) and manifested by performance adaptations. We recorded electroencephalogram over and neural spiking across all layers of the supplementary eye field, an agranular cortical area, in monkeys performing a saccade-countermanding (stop signal) task. Neurons signaling error production, feedback predicting reward gain or loss, and delivery of fluid reward had different spike widths and were concentrated differently across layers. Neurons signaling error or loss of reward were more common in layers 2 and 3 (L2/3), whereas neurons signaling gain of reward were more common in layers 5 and 6 (L5/6). Variation of error- and reinforcement-related spike rates in L2/3 but not L5/6 predicted response time adaptation. Variation in error-related spike rate in L2/3 but not L5/6 predicted ERN magnitude. These findings reveal novel features of cortical microcircuitry supporting performance monitoring and confirm one cortical source of the ERN.
0 Communities
1 Members
0 Resources
MeSH Terms
Brain network functional connectivity and cognitive performance in major depressive disorder.
Albert KM, Potter GG, Boyd BD, Kang H, Taylor WD
(2019) J Psychiatr Res 110: 51-56
MeSH Terms: Adult, Cerebral Cortex, Cognitive Dysfunction, Connectome, Depressive Disorder, Major, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Nerve Net, Young Adult
Show Abstract · Added March 26, 2019
BACKGROUND - Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders. Cognitive complaints are commonly reported in MDD and cognitive impairment is a criterion item for MDD diagnosis. As cognitive processes are increasingly understood as the consequences of distributed interactions between brain regions, a network-based approach may provide novel information about the neurobiological basis of cognitive deficits in MDD.
METHODS - 51 Depressed (MDD, n = 23) and non-depressed (control, n = 28) adult participants completed neuropsychological testing and resting-state fMRI (rsfMRI). Cognitive domain scores (processing speed, working memory, episodic memory, and executive function) were calculated. Anatomical regions of interests were entered as seeds for functional connectivity analyses in: default mode (DMN), salience, and executive control (ECN) networks. Partial correlations controlling for age and sex were conducted for cognitive domain scores and functional connectivity in clusters with significant differences between groups.
RESULTS - Significant rsfMRI differences between groups were identified in multiple clusters in the DMN and ECN. Greater positive connectivity within the ECN and between ECN and DMN regions was associated with poorer episodic memory performance in the Non-Depressed group but better performance in the MDD group. Greater connectivity within the DMN was associated with better episodic and working memory performance in the Non-Depressed group but worse performance in the MDD group.
CONCLUSIONS - These results provide evidence that cognitive performance in MDD may be associated with aberrant functional connectivity in cognitive networks and suggest patterns of alternate brain function that may support cognitive processes in MDD.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms