Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 25

Publication Record

Connections

The balance between adhesion and contraction during cell division.
Taneja N, Rathbun L, Hehnly H, Burnette DT
(2019) Curr Opin Cell Biol 56: 45-52
MeSH Terms: Animals, Cell Adhesion, Centrosome, Humans, Microtubules, Mitosis, Signal Transduction, Spindle Apparatus
Show Abstract · Added March 27, 2019
The ability to divide is a fundamental property of a living cell. The 3D orientation of cell division is essential for embryogenesis, maintenance of tissue organization and architecture, as well as controlling cell fate. Much attention has been placed on the mitotic spindle's role in placing itself along the cell's longest axis, where a shape sensing mechanism between a population of microtubules extending from mitotic centrosomes to the cell cortex occurs. However, contractile forces at the cell cortex also likely play a decisive role in determining the final placement of daughter cells following division. In this review, we discuss recent literature that describes the role of these contractile forces and how these forces could be balanced by mitotic adhesion complexes.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.
Kolobova E, Roland JT, Lapierre LA, Williams JA, Mason TA, Goldenring JR
(2017) J Biol Chem 292: 20394-20409
MeSH Terms: A Kinase Anchor Proteins, Biomarkers, Cell Cycle Proteins, Cell Line, Centrosome, Cytoskeletal Proteins, Humans, Imaging, Three-Dimensional, Intracellular Signaling Peptides and Proteins, Luminescent Proteins, Microscopy, Electron, Transmission, Microtubule-Associated Proteins, Microtubule-Organizing Center, Models, Molecular, Nerve Tissue Proteins, Peptide Fragments, Phosphoproteins, Protein Interaction Domains and Motifs, Protein Interaction Mapping, Protein Multimerization, Proteomics, RNA Interference, Recombinant Fusion Proteins, Recombinant Proteins, Two-Hybrid System Techniques
Show Abstract · Added April 3, 2018
Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.
0 Communities
1 Members
0 Resources
25 MeSH Terms
A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies.
Jao LE, Akef A, Wente SR
(2017) Mol Biol Cell 28: 120-127
MeSH Terms: Active Transport, Cell Nucleus, Adenosine Triphosphatases, Antigens, Basal Bodies, Centrosome, DEAD-box RNA Helicases, Nuclear Pore, Nuclear Pore Complex Proteins, Nucleocytoplasmic Transport Proteins, Protein Binding, RNA Transport, RNA, Messenger, RNA-Binding Proteins, Zebrafish Proteins
Show Abstract · Added April 14, 2017
Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.
© 2017 Jao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
14 MeSH Terms
Focal adhesions control cleavage furrow shape and spindle tilt during mitosis.
Taneja N, Fenix AM, Rathbun L, Millis BA, Tyska MJ, Hehnly H, Burnette DT
(2016) Sci Rep 6: 29846
MeSH Terms: Animals, Cell Differentiation, Cell Shape, Centrosome, Dogs, Focal Adhesion Protein-Tyrosine Kinases, Focal Adhesions, HeLa Cells, Humans, Madin Darby Canine Kidney Cells, Mitosis, Spindle Apparatus, Vinculin
Show Abstract · Added April 7, 2017
The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells-MDCK-within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Intracellular and extracellular forces drive primary cilia movement.
Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF
(2015) Proc Natl Acad Sci U S A 112: 1410-5
MeSH Terms: Animals, Centrosome, Cilia, Dogs, Madin Darby Canine Kidney Cells, Microscopy, Electron, Movement
Show Abstract · Added August 25, 2017
Primary cilia are ubiquitous, microtubule-based organelles that play diverse roles in sensory transduction in many eukaryotic cells. They interrogate the cellular environment through chemosensing, osmosensing, and mechanosensing using receptors and ion channels in the ciliary membrane. Little is known about the mechanical and structural properties of the cilium and how these properties contribute to ciliary perception. We probed the mechanical responses of primary cilia from kidney epithelial cells [Madin-Darby canine kidney-II (MDCK-II)], which sense fluid flow in renal ducts. We found that, on manipulation with an optical trap, cilia deflect by bending along their length and pivoting around an effective hinge located below the basal body. The calculated bending rigidity indicates weak microtubule doublet coupling. Primary cilia of MDCK cells lack interdoublet dynein motors. Nevertheless, we found that the organelles display active motility. 3D tracking showed correlated fluctuations of the cilium and basal body. These angular movements seemed random but were dependent on ATP and cytoplasmic myosin-II in the cell cortex. We conclude that force generation by the actin cytoskeleton surrounding the basal body results in active ciliary movement. We speculate that actin-driven ciliary movement might tune and calibrate ciliary sensory functions.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis.
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K
(2014) J Cell Biol 207: 189-99
MeSH Terms: Adenosine Triphosphatases, Centrosome, Chromatin, DNA-Binding Proteins, Hydro-Lyases, Kinetochores, Microtubule-Associated Proteins, Mitosis, Multiprotein Complexes, RNA, Transfer, Ribonucleoproteins, Small Nuclear, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Spindle Apparatus
Show Abstract · Added January 25, 2016
Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
© 2014 Snider et al.
0 Communities
1 Members
0 Resources
14 MeSH Terms
asunder is required for dynein localization and dorsal fate determination during Drosophila oogenesis.
Sitaram P, Merkle JA, Lee E, Lee LA
(2014) Dev Biol 386: 42-52
MeSH Terms: Alleles, Animals, Body Patterning, Cell Cycle Proteins, Cell Lineage, Cell Nucleus, Centrosome, Drosophila, Drosophila Proteins, Dyneins, Female, Gene Expression Regulation, Developmental, Genotype, Homozygote, In Situ Hybridization, Male, Oocytes, Oogenesis, Ovary, Phenotype, Sex Factors, Testis, Transgenes
Show Abstract · Added March 5, 2014
We previously showed that asunder (asun) is a critical regulator of dynein localization during Drosophila spermatogenesis. Because the expression of asun is much higher in Drosophila ovaries and early embryos than in testes, we herein sought to determine whether ASUN plays roles in oogenesis and/or embryogenesis. We characterized the female germline phenotypes of flies homozygous for a null allele of asun (asun(d93)). We find that asun(d93) females lay very few eggs and contain smaller ovaries with a highly disorganized arrangement of ovarioles in comparison to wild-type females. asun(d93) ovaries also contain a significant number of egg chambers with structural defects. A majority of the eggs laid by asun(d93) females are ventralized to varying degrees, from mild to severe; this ventralization phenotype may be secondary to defective localization of gurken transcripts, a dynein-regulated step, within asun(d93) oocytes. We find that dynein localization is aberrant in asun(d93) oocytes, indicating that ASUN is required for this process in both male and female germ cells. In addition to the loss of gurken mRNA localization, asun(d93) ovaries exhibit defects in other dynein-mediated processes such as migration of nurse cell centrosomes into the oocyte during the early mitotic divisions, maintenance of the oocyte nucleus in the anterior-dorsal region of the oocyte in late-stage egg chambers, and coupling between the oocyte nucleus and centrosomes. Taken together, our data indicate that asun is a critical regulator of dynein localization and dynein-mediated processes during Drosophila oogenesis.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Ice recovery assay for detection of Golgi-derived microtubules.
Grimaldi AD, Fomicheva M, Kaverina I
(2013) Methods Cell Biol 118: 401-15
MeSH Terms: Biological Transport, Cell Line, Centrosome, Golgi Apparatus, Humans, Ice, Microscopy, Confocal, Microscopy, Fluorescence, Microtubule-Organizing Center, Microtubules, Tubulin
Show Abstract · Added March 20, 2014
Proper organization of the microtubule cytoskeleton is essential for many cellular processes including maintenance of Golgi organization and cell polarity. Traditionally, the centrosome is considered to be the major microtubule organizing center (MTOC) of the cell; however, microtubule nucleation can also occur through centrosome-independent mechanisms. Recently, the Golgi has been described as an additional, centrosome-independent, MTOC with distinct cellular functions. Golgi-derived microtubules contribute to the formation of an asymmetric microtubule network, control Golgi organization, and support polarized trafficking and directed migration in motile cells. In this chapter, we present an assay using recovery from ice treatment to evaluate the potential of the Golgi, or other MTOCs, to nucleate microtubules. This technique allows for clear separation of distinct MTOCs and observation of newly nucleated microtubules at these locations, which are normally obscured by the dense microtubule network present at steady-state conditions. This type of analysis is important for discovery and characterization of noncentrosomal MTOCs and, ultimately, understanding of their unique cellular functions.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts.
Zhang X, Hagen J, Muniz VP, Smith T, Coombs GS, Eischen CM, Mackie DI, Roman DL, Van Rheeden R, Darbro B, Tompkins VS, Quelle DE
(2013) PLoS One 8: e80228
MeSH Terms: ADP-Ribosylation Factors, Animals, Centrosome, Chromosomal Instability, Fibroblasts, Gene Knockout Techniques, Gene Silencing, Humans, Mice, Nuclear Proteins, Oncogene Proteins, Tumor Suppressor Protein p53, rab GTP-Binding Proteins
Show Abstract · Added March 17, 2014
RABL6A (RAB-like 6 isoform A) is a novel protein that was originally identified based on its association with the Alternative Reading Frame (ARF) tumor suppressor. ARF acts through multiple p53-dependent and p53-independent pathways to prevent cancer. How RABL6A functions, to what extent it depends on ARF and p53 activity, and its importance in normal cell biology are entirely unknown. We examined the biological consequences of RABL6A silencing in primary mouse embryo fibroblasts (MEFs) that express or lack ARF, p53 or both proteins. We found that RABL6A depletion caused centrosome amplification, aneuploidy and multinucleation in MEFs regardless of ARF and p53 status. The centrosome amplification in RABL6A depleted p53-/- MEFs resulted from centrosome reduplication via Cdk2-mediated hyperphosphorylation of nucleophosmin (NPM) at threonine-199. Thus, RABL6A prevents centrosome amplification through an ARF/p53-independent mechanism that restricts NPM-T199 phosphorylation. These findings demonstrate an essential role for RABL6A in centrosome regulation and maintenance of chromosome stability in non-transformed cells, key processes that ensure genomic integrity and prevent tumorigenesis.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Human Asunder promotes dynein recruitment and centrosomal tethering to the nucleus at mitotic entry.
Jodoin JN, Shboul M, Sitaram P, Zein-Sabatto H, Reversade B, Lee E, Lee LA
(2012) Mol Biol Cell 23: 4713-24
MeSH Terms: 1-Alkyl-2-acetylglycerophosphocholine Esterase, Animals, Carrier Proteins, Cell Cycle Proteins, Cell Line, Tumor, Cell Nucleus, Centrosome, Chromosomal Proteins, Non-Histone, Drosophila melanogaster, Dyneins, Female, G2 Phase, Genetic Complementation Test, HEK293 Cells, HeLa Cells, Humans, Immunoblotting, Male, Mice, Microfilament Proteins, Microscopy, Fluorescence, Microtubule-Associated Proteins, Mitosis, Mutation, Nuclear Pore, Protein Binding, RNA Interference, Spindle Apparatus
Show Abstract · Added March 5, 2014
Recruitment of dynein motors to the nuclear surface is an essential step for nucleus-centrosome coupling in prophase. In cultured human cells, this dynein pool is anchored to nuclear pore complexes through RanBP2-Bicaudal D2 (BICD2) and Nup133- centromere protein F (CENP-F) networks. We previously reported that the asunder (asun) gene is required in Drosophila spermatocytes for perinuclear dynein localization and nucleus-centrosome coupling at G2/M of male meiosis. We show here that male germline expression of mammalian Asunder (ASUN) protein rescues asun flies, demonstrating evolutionary conservation of function. In cultured human cells, we find that ASUN down-regulation causes reduction of perinuclear dynein in prophase of mitosis. Additional defects after loss of ASUN include nucleus-centrosome uncoupling, abnormal spindles, and multinucleation. Coimmunoprecipitation and overlapping localization patterns of ASUN and lissencephaly 1 (LIS1), a dynein adaptor, suggest that ASUN interacts with dynein in the cytoplasm via LIS1. Our data indicate that ASUN controls dynein localization via a mechanism distinct from that of either BICD2 or CENP-F. We present a model in which ASUN promotes perinuclear enrichment of dynein at G2/M that facilitates BICD2- and CENP-F-mediated anchoring of dynein to nuclear pore complexes.
1 Communities
2 Members
0 Resources
28 MeSH Terms