, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 19

Publication Record

Connections

Maturity and age influence chief cell ability to transdifferentiate into metaplasia.
Weis VG, Petersen CP, Weis JA, Meyer AR, Choi E, Mills JC, Goldenring JR
(2017) Am J Physiol Gastrointest Liver Physiol 312: G67-G76
MeSH Terms: Age Factors, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Lineage, Cell Proliferation, Cell Transdifferentiation, Chief Cells, Gastric, Gastric Mucosa, Intercellular Signaling Peptides and Proteins, Metaplasia, Mice, Mice, Knockout, Parietal Cells, Gastric, Peptides, Stomach
Show Abstract · Added April 18, 2017
The plasticity of gastric chief cells is exemplified by their ability to transdifferentiate into spasmolytic polypeptide-expressing metaplasia (SPEM) after parietal cell loss. We sought to determine if chief cell maturity is a limiting factor in the capacity to transdifferentiate. Mist1 mice, previously shown to form only immature chief cells, were treated with DMP-777 or L635 to study the capability of these immature chief cells to transdifferentiate into a proliferative metaplastic lineage after acute parietal cell loss. Mist1 mice treated with DMP-777 showed fewer chief cell to SPEM transitions. Mist1 mice treated with L635 demonstrated significantly fewer proliferative SPEM cells compared with control mice. Thus immature chief cells were unable to transdifferentiate efficiently into SPEM after acute parietal cell loss. To determine whether chief cell age affects transdifferentiation into SPEM, we used tamoxifen to induce YFP expression in chief cells of Mist1;Rosa mice and subsequently treated the cells with L635 to induce SPEM at 1 to 3.5 mo after tamoxifen treatment. After L635 treatment to induce acute parietal cell loss, 43% of all YFP-positive cells at 1 mo posttamoxifen were SPEM cells, of which 44% of these YFP-positive SPEM cells were proliferative. By 2 mo after tamoxifen induction, only 24% of marked SPEM cells were proliferating. However, by 3.5 mo after tamoxifen induction, only 12% of marked chief cells transdifferentiated into SPEM and none were proliferative. Thus, as chief cells age, they lose their ability to transdifferentiate into SPEM and proliferate. Therefore, both functional maturation and age limit chief cell plasticity.
NEW & NOTEWORTHY - Previous investigations have indicated that spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach arises from transdifferentiation of chief cells. Nevertheless, the intrinsic properties of chief cells that influence transdifferentiation have been largely unknown. We now report that the ability to transdifferentiate into SPEM is impaired in chief cells that lack full functional maturation, and as chief cells age, they lose their ability to transdifferentiate. Thus chief cell plasticity is dependent on both cell age and maturation.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Endothelial-to-mesenchymal transition in lipopolysaccharide-induced acute lung injury drives a progenitor cell-like phenotype.
Suzuki T, Tada Y, Nishimura R, Kawasaki T, Sekine A, Urushibara T, Kato F, Kinoshita T, Ikari J, West J, Tatsumi K
(2016) Am J Physiol Lung Cell Mol Physiol 310: L1185-98
MeSH Terms: Acute Lung Injury, Animals, Apoptosis, Cell Proliferation, Cell Transdifferentiation, Cells, Cultured, Endothelial Progenitor Cells, Endothelium, Vascular, Female, Gene Expression, Lipopolysaccharides, Mice, Inbred C57BL, NADPH Oxidases, Phenotype, Reactive Oxygen Species, Transforming Growth Factor beta1, Transforming Growth Factor beta2
Show Abstract · Added April 2, 2019
Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c-kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
MeSH Terms
Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a δ-like fate and reveals a facultative proliferative capacity in aged β-cells.
Pan FC, Brissova M, Powers AC, Pfaff S, Wright CV
(2015) Development 142: 3637-48
MeSH Terms: Animals, Cell Transdifferentiation, Cellular Senescence, Diabetes Mellitus, Eye Proteins, Homeodomain Proteins, Humans, Hyperplasia, Insulin-Secreting Cells, Mice, PAX6 Transcription Factor, Paired Box Transcription Factors, Repressor Proteins, Somatostatin-Secreting Cells, Transcription Factors
Show Abstract · Added December 28, 2015
Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and β-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes β-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal β-cell fate maintenance. Inactivating Mnx1 in embryonic β-cells (Mnx1(Δbeta)) caused β-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, β-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper β-cells restored, but then eventually surpassed, the normal pancreatic β-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after β-cell ablation, suggesting that the new β-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in β-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous β-cells for diabetes therapy.
© 2015. Published by The Company of Biologists Ltd.
0 Communities
3 Members
0 Resources
15 MeSH Terms
Insm1 controls the differentiation of pulmonary neuroendocrine cells by repressing Hes1.
Jia S, Wildner H, Birchmeier C
(2015) Dev Biol 408: 90-8
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Transdifferentiation, DNA-Binding Proteins, Homeodomain Proteins, Lung, Mice, Mutant Strains, Mutation, Neuroendocrine Cells, Protein Binding, Repressor Proteins, Transcription Factor HES-1, Transcription Factors
Show Abstract · Added March 29, 2016
Epithelial progenitor cells of the lung generate all cell types of the mature airway epithelium, among them the neuroendocrine cells. The balance between formation of pulmonary neuroendocrine and non-neuroendocrine cells is controlled by Notch signaling. The Notch target gene Hes1 is expressed by non-neuroendocrine and absent in neuroendocrine cells. The transcription factor Ascl1 is expressed in a complementary pattern and provides key regulatory information that specifies the neuroendocrine cell fate. The molecular events that occur after the induction of the neuroendocrine differentiation program have received little attention. Here we show that Insm1 is expressed in pulmonary neuroendocrine cells, and that Insm1 expression is not initiated in the lung of Ascl1 mutant mice. We use mouse genetics to show that pulmonary neuroendocrine cells depend on Insm1 for their differentiation. Mutation of Insm1 blocks terminal differentiation, upregulates Hes1 protein in neuroendocrine cells and interferes with maintenance of Ascl1 expression. We show that Insm1 binds to the Hes1 promoter and represses Hes1, and we propose that the Insm1-dependent Hes1 repression is required for neuroendocrine development. Our work demonstrates that Insm1 is a key factor regulating differentiation of pulmonary neuroendocrine cells.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
14 MeSH Terms
The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma.
Krah NM, De La O JP, Swift GH, Hoang CQ, Willet SG, Chen Pan F, Cash GM, Bronner MP, Wright CV, MacDonald RJ, Murtaugh LC
(2015) Elife 4:
MeSH Terms: Acinar Cells, Adenocarcinoma, Animals, Carcinoma in Situ, Carcinoma, Pancreatic Ductal, Cell Transdifferentiation, Disease Models, Animal, Gene Expression Profiling, Humans, Mice, Transcription Factors
Show Abstract · Added August 4, 2015
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas.
1 Communities
1 Members
0 Resources
11 MeSH Terms
Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers.
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL
(2014) Nature 514: 503-7
MeSH Terms: Aging, Animals, Cell Dedifferentiation, Cell Proliferation, Cell Transdifferentiation, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Forkhead Box Protein O1, Forkhead Transcription Factors, Glucagon-Secreting Cells, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Mice, Regeneration, Sexual Maturation, Somatostatin, Somatostatin-Secreting Cells
Show Abstract · Added October 15, 2015
Total or near-total loss of insulin-producing β-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after β-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Retinal pigment epithelium development, plasticity, and tissue homeostasis.
Fuhrmann S, Zou C, Levine EM
(2014) Exp Eye Res 123: 141-50
MeSH Terms: Animals, Cell Transdifferentiation, Homeostasis, Humans, Regeneration, Retinal Pigment Epithelium, Stem Cell Transplantation
Show Abstract · Added November 2, 2015
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Copyright © 2013 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
7 MeSH Terms
Conversion of mature human β-cells into glucagon-producing α-cells.
Spijker HS, Ravelli RB, Mommaas-Kienhuis AM, van Apeldoorn AA, Engelse MA, Zaldumbide A, Bonner-Weir S, Rabelink TJ, Hoeben RC, Clevers H, Mummery CL, Carlotti F, de Koning EJ
(2013) Diabetes 62: 2471-80
MeSH Terms: Adult, Aged, Animals, Cell Lineage, Cell Transdifferentiation, Glucagon-Secreting Cells, Glucose, Homeodomain Proteins, Humans, Insulin, Insulin-Secreting Cells, Islets of Langerhans, Male, Mice, Middle Aged, Trans-Activators
Show Abstract · Added August 14, 2013
Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing β-cells in a model of islet cell aggregate formation. Here, we show that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification. The process occurs within days as revealed by lentivirus-mediated β-cell lineage tracing. Converted cells are indistinguishable from native α-cells based on ultrastructural morphology and maintain their α-cell phenotype after transplantation in vivo. Transition of β-cells into α-cells occurs after β-cell degranulation and is characterized by the presence of β-cell-specific transcription factors Pdx1 and Nkx6.1 in glucagon(+) cells. Finally, we show that lentivirus-mediated knockdown of Arx, a determinant of the α-cell lineage, inhibits the conversion. Our findings reveal an unknown plasticity of human adult endocrine cells that can be modulated. This endocrine cell plasticity could have implications for islet development, (patho)physiology, and regeneration.
0 Communities
0 Members
1 Resources
16 MeSH Terms
Reprogramming of human fibroblasts toward a cardiac fate.
Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, Olson EN
(2013) Proc Natl Acad Sci U S A 110: 5588-93
MeSH Terms: Basic Helix-Loop-Helix Transcription Factors, Cell Transdifferentiation, Fibroblasts, Flow Cytometry, GATA4 Transcription Factor, Gene Expression Regulation, Humans, Immunohistochemistry, MicroRNAs, Myocytes, Cardiac, Phenotype, Real-Time Polymerase Chain Reaction
Show Abstract · Added August 1, 2014
Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4-11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Deficiency in metabolic regulators PPARγ and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration.
Strand DW, DeGraff DJ, Jiang M, Sameni M, Franco OE, Love HD, Hayward WJ, Lin-Tsai O, Wang AY, Cates JM, Sloane BF, Matusik RJ, Hayward SW
(2013) Am J Pathol 182: 449-59
MeSH Terms: Adult, Animals, Base Sequence, Cell Line, Cell Transdifferentiation, Coculture Techniques, Epithelial Cells, Humans, Hyperplasia, Mesoderm, Metaplasia, Mice, Models, Biological, Molecular Sequence Data, PPAR gamma, PTEN Phosphohydrolase, Regeneration, Urothelium
Show Abstract · Added December 10, 2013
Hindgut-derived endoderm can differentiate into rectal, prostatic, and bladder phenotypes. Stromal-epithelial interactions are crucial for this development; however, the precise mechanisms by which epithelium responds to stromal cues remain unknown. We have previously reported ectopic expression of peroxisome proliferator-activated receptor-γ2 (PPARγ2) increased androgen receptor expression and promoted differentiation of mouse prostate epithelium. PPARγ is also implicated in urothelial differentiation. Herein we demonstrate that knockdown of PPARγ2 in benign human prostate epithelial cells (BHPrEs) promotes urothelial transdifferentiation. Furthermore, in vitro and in vivo heterotypic tissue regeneration models with embryonic bladder mesenchyme promoted urothelial differentiation of PPARγ2-deficient BHPrE cells, and deficiency of both PPARγ isoforms 1 and 2 arrested differentiation. Because PTEN deficiency is cooperative in urothelial pathogenesis, we engineered BHPrE cells with combined knockdown of PPARγ and PTEN and performed heterotypic recombination experiments using embryonic bladder mesenchyme. Whereas PTEN deficiency alone induced latent squamous differentiation in BHPrE cells, combined PPARγ and PTEN deficiency accelerated the development of keratinizing squamous metaplasia (KSM). We further confirmed via immunohistochemistry that gene expression changes in metaplastic recombinants reflected human urothelium undergoing KSM. In summary, these data suggest that PPARγ isoform expression provides a molecular basis for observations that adult human epithelium can be transdifferentiated on the basis of heterotypic mesenchymal induction. These data also implicate PPARγ and PTEN inactivation in the development of KSM.
Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
1 Communities
4 Members
0 Resources
18 MeSH Terms