Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 16

Publication Record

Connections

Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study.
Salisbury-Ruf CT, Bertram CC, Vergeade A, Lark DS, Shi Q, Heberling ML, Fortune NL, Okoye GD, Jerome WG, Wells QS, Fessel J, Moslehi J, Chen H, Roberts LJ, Boutaud O, Gamazon ER, Zinkel SS
(2018) Elife 7:
MeSH Terms: Animals, Apoptosis, BH3 Interacting Domain Death Agonist Protein, Beclin-1, Cell Respiration, Fibrosis, Gene Expression Regulation, Genome-Wide Association Study, Genomics, Heart Diseases, Heart Ventricles, Humans, Mice, Inbred C57BL, Mitochondria, Mitochondrial Proton-Translocating ATPases, Mutation, Myeloid Progenitor Cells, Myocardial Infarction, Myocytes, Cardiac, Polymorphism, Single Nucleotide, Protein Multimerization, Protein Structure, Secondary, Protein Subunits, Reactive Oxygen Species, Reproducibility of Results, Up-Regulation
Show Abstract · Added December 11, 2018
Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, Bid, associates with MI predisposition. Furthermore, Bid but not Bid associates with Mcl-1, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.
© 2018, Salisbury-Ruf et al.
0 Communities
3 Members
0 Resources
26 MeSH Terms
Loss of the melanocortin-4 receptor in mice causes dilated cardiomyopathy.
Litt MJ, Okoye GD, Lark D, Cakir I, Moore C, Barber MC, Atkinson J, Fessel J, Moslehi J, Cone RD
(2017) Elife 6:
MeSH Terms: Adenosine Diphosphate, Animals, Cardiomyopathy, Dilated, Cell Respiration, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Myocardium, Myocytes, Cardiac, Reactive Oxygen Species, Receptor, Melanocortin, Type 4
Show Abstract · Added December 2, 2017
Haploinsufficiency of the melanocortin-4 receptor, the most common monogenetic obesity syndrome in humans, is associated with a reduction in autonomic tone, bradycardia, and incidence of obesity-associated hypertension. Thus, it has been assumed that melanocortin obesity syndrome may be protective with respect to obesity-associated cardiovascular disease. We show here that absence of the melanocortin-4 receptor (MC4R) in mice causes dilated cardiomyopathy, characterized by reduced contractility and increased left ventricular diameter. This cardiomyopathy is independent of obesity as weight matched diet induced obese mice do not display systolic dysfunction. cardiomyopathy is characterized by ultrastructural changes in mitochondrial morphology and cardiomyocyte disorganization. Remarkably, testing of myocardial tissue from mice exhibited increased ADP stimulated respiratory capacity. However, this increase in respiration correlates with increased reactive oxygen species production - a canonical mediator of tissue damage. Together this study identifies MC4R deletion as a novel and potentially clinically important cause of heart failure.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Cardiolipin fatty acid remodeling regulates mitochondrial function by modifying the electron entry point in the respiratory chain.
Vergeade A, Bertram CC, Bikineyeva AT, Zackert WE, Zinkel SS, May JM, Dikalov SI, Roberts LJ, Boutaud O
(2016) Mitochondrion 28: 88-95
MeSH Terms: Acetaminophen, Antipyretics, Cardiolipins, Cell Respiration, Cells, Cultured, Electron Transport, Fatty Acids, Humans, Mitochondria, Myeloid Progenitor Cells, Quinones
Show Abstract · Added April 25, 2016
Modifications of cardiolipin (CL) levels or compositions are associated with changes in mitochondrial function in a wide range of pathologies. We have made the discovery that acetaminophen remodels CL fatty acids composition from tetralinoleoyl to linoleoyltrioleoyl-CL, a remodeling that is associated with decreased mitochondrial respiration. Our data show that CL remodeling causes a shift in electron entry from complex II to the β-oxidation electron transfer flavoprotein quinone oxidoreductase (ETF/QOR) pathway. These data demonstrate that electron entry in the respiratory chain is regulated by CL fatty acid composition and provide proof-of-concept that pharmacological intervention can be used to modify CL composition.
Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Meclizine Preconditioning Protects the Kidney Against Ischemia-Reperfusion Injury.
Kishi S, Campanholle G, Gohil VM, Perocchi F, Brooks CR, Morizane R, Sabbisetti V, Ichimura T, Mootha VK, Bonventre JV
(2015) EBioMedicine 2: 1090-101
MeSH Terms: Acute Kidney Injury, Adenosine Triphosphate, Animals, Cell Respiration, Cytochromes c, Deoxyglucose, Disease Models, Animal, Epithelial Cells, Ethanolamines, Galactose, Glycolysis, Humans, Inflammation, Ischemic Preconditioning, Kidney, Kidney Tubules, L-Lactate Dehydrogenase, LLC-PK1 Cells, Male, Meclizine, Mice, Inbred C57BL, Mitochondria, Protective Agents, Reperfusion Injury, Sodium Cyanide, Swine, Up-Regulation
Show Abstract · Added September 12, 2016
Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a 'nutrient-sensitized' chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo.
1 Communities
1 Members
0 Resources
27 MeSH Terms
Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction.
Bajpai P, Srinivasan S, Ghosh J, Nagy LD, Wei S, Guengerich FP, Avadhani NG
(2014) J Biol Chem 289: 29614-30
MeSH Terms: Alternative Splicing, Amino Acid Sequence, Amino Acids, Animals, Arachidonic Acid, Aryl Hydrocarbon Hydroxylases, Biocatalysis, COS Cells, Cell Respiration, Cercopithecus aethiops, Computer Simulation, Cytochrome P-450 CYP2C8, Heme, Hep G2 Cells, Humans, Isoenzymes, Microsomes, Liver, Mitochondria, Models, Molecular, Molecular Sequence Data, Oxidation-Reduction, Oxidative Stress, Protein Binding, Protein Transport, RNA, Messenger, Reactive Oxygen Species, Sequence Alignment
Show Abstract · Added January 20, 2015
In this study, we found that the full-length CYP2C8 (WT CYP2C8) and N-terminal truncated splice variant 3 (∼ 44-kDa mass) are localized in mitochondria in addition to the endoplasmic reticulum. Analysis of human livers showed that the mitochondrial levels of these two forms varied markedly. Molecular modeling based on the x-ray crystal structure coordinates of CYP2D6 and CYP2C8 showed that despite lacking the N-terminal 102 residues variant 3 possessed nearly complete substrate binding and heme binding pockets. Stable expression of cDNAs in HepG2 cells showed that the WT protein is mostly targeted to the endoplasmic reticulum and at low levels to mitochondria, whereas variant 3 is primarily targeted to mitochondria and at low levels to the endoplasmic reticulum. Enzyme reconstitution experiments showed that both microsomal and mitochondrial WT CYP2C8 efficiently catalyzed paclitaxel 6-hydroxylation. However, mitochondrial variant 3 was unable to catalyze this reaction possibly because of its inability to stabilize the large 854-Da substrate. Conversely, mitochondrial variant 3 catalyzed the metabolism of arachidonic acid into 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid when reconstituted with adrenodoxin and adrenodoxin reductase. HepG2 cells stably expressing variant 3 generated higher levels of reactive oxygen species and showed a higher level of mitochondrial respiratory dysfunction. This study suggests that mitochondrially targeted variant 3 CYP2C8 may contribute to oxidative stress in various tissues.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
2 Members
0 Resources
27 MeSH Terms
Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors.
Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, Bell EL, Shim HS, Lamia KA, Rameh LE, Bellinger G, Sasaki AT, Asara JM, Yuan X, Bullock A, Denicola GM, Song J, Brown V, Signoretti S, Cantley LC
(2013) Cell 155: 844-57
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Cell Proliferation, Cell Respiration, Cellular Senescence, Embryo, Mammalian, Gene Knockdown Techniques, Genes, Lethal, Heterografts, Humans, Mice, Neoplasm Transplantation, Phosphotransferases (Alcohol Group Acceptor), Reactive Oxygen Species, Signal Transduction, Tumor Suppressor Protein p53
Show Abstract · Added November 26, 2018
Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or β (PI5P4Kα and β) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and β in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K β and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress.
Nazarewicz RR, Dikalova AE, Bikineyeva A, Dikalov SI
(2013) Am J Physiol Heart Circ Physiol 305: H1131-40
MeSH Terms: Animals, Aorta, Blood Pressure, Cell Respiration, Cells, Cultured, Diazoxide, Electron Transport Complex I, Electron Transport Complex II, Endothelial Cells, Humans, Membrane Glycoproteins, Membrane Potential, Mitochondrial, Mice, Mitochondria, NADPH Oxidase 2, NADPH Oxidases, Oxidative Stress, Potassium Channels, Superoxides, Vasodilator Agents
Show Abstract · Added March 30, 2014
Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.
0 Communities
3 Members
0 Resources
20 MeSH Terms
Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture.
Templeton N, Dean J, Reddy P, Young JD
(2013) Biotechnol Bioeng 110: 2013-24
MeSH Terms: Animals, Antibodies, CHO Cells, Carbon Radioisotopes, Cell Respiration, Cricetulus, Energy Metabolism, Isotope Labeling, Lactates, Metabolic Flux Analysis, Recombinant Proteins
Show Abstract · Added January 23, 2015
Cell metabolism can vary considerably over the course of a typical fed-batch antibody production process. However, the intracellular pathway alterations associated with various phases of growth and antibody production have yet to be fully elucidated using industrially relevant production hosts. Therefore, we performed (13)C labeling experiments and metabolic flux analysis (MFA) to characterize CHO cell metabolism during four separate phases of a fed-batch culture designed to closely represent industrial process conditions. First, we found that peak specific growth rate was associated with high lactate production and minimal TCA cycling. Conversely, we found that lactate metabolism switched from net production to net consumption as the culture transitioned from peak growth to peak antibody production. During the peak antibody production phase, energy was primarily generated through oxidative phosphorylation, which was also associated with elevated oxidative pentose phosphate pathway (oxPPP) activity. Interestingly, as TCA cycling and antibody production reached their peaks, specific growth rate continued to diminish as the culture entered stationary phase. However, TCA cycling and oxPPP activity remained high even as viable cell density began to decline. Overall, we found that a highly oxidative state of metabolism corresponded with peak antibody production, whereas peak cell growth was characterized by a highly glycolytic metabolic state.
Copyright © 2013 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Systemic elevation of PTEN induces a tumor-suppressive metabolic state.
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP
(2012) Cell 149: 49-62
MeSH Terms: Animals, Body Size, Cell Count, Cell Proliferation, Cell Respiration, Energy Metabolism, Mice, Mice, Transgenic, Mitochondria, PTEN Phosphohydrolase, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-myc, Signal Transduction
Show Abstract · Added December 10, 2018
Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.
Copyright © 2012 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Rat diaphragm mitochondria have lower intrinsic respiratory rates than mitochondria in limb muscles.
Garcia-Cazarin ML, Gamboa JL, Andrade FH
(2011) Am J Physiol Regul Integr Comp Physiol 300: R1311-5
MeSH Terms: Animals, Cell Respiration, Diaphragm, Extremities, Ion Channels, Male, Mitochondria, Muscle, Mitochondrial Proteins, Models, Animal, Muscle, Skeletal, Oxygen Consumption, Rats, Rats, Sprague-Dawley, Respiratory Muscles, Uncoupling Protein 1, Voltage-Dependent Anion Channel 1
Show Abstract · Added April 25, 2016
The mitochondrial content of skeletal muscles is proportional to activity level, with the assumption that intrinsic mitochondrial function is the same in all muscles. This may not hold true for all muscles. For example, the diaphragm is a constantly active muscle; it is possible that its mitochondria are intrinsically different compared with other muscles. This study tested the hypothesis that mitochondrial respiration rates are greater in the diaphragm compared with triceps surae (TS, a limb muscle). We isolated mitochondria from diaphragm and TS of adult male Sprague Dawley rats. Mitochondrial respiration was measured by polarography. The contents of respiratory complexes, uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3), and voltage-dependent anion channel 1 (VDAC1) were determined by immunoblotting. Complex IV activity was measured by spectrophotometry. Mitochondrial respiration states 3 (substrate and ADP driven) and 5 (uncoupled) were 27 ± 8% and 24 ± 10%, respectively, lower in diaphragm than in TS (P < 0.05 for both comparisons). However, the contents of respiratory complexes III, IV, and V, UCP1, and VDAC1 were higher in diaphragm mitochondria (23 ± 6, 30 ± 8, 25 ± 8, 36 ± 15, and 18 ± 8% respectively, P ≤ 0.04 for all comparisons). Complex IV activity was 64 ± 16% higher in diaphragm mitochondria (P ≤ 0.01). Mitochondrial UCP2 and UCP3 content and complex I activity were not different between TS and diaphragm. These data indicate that diaphragm mitochondria respire at lower rates, despite a higher content of respiratory complexes. The results invalidate our initial hypothesis and indicate that mitochondrial content is not the only determinant of aerobic capacity in the diaphragm. We propose that UCP1 and VDAC1 play a role in regulating diaphragm aerobic capacity.
0 Communities
1 Members
0 Resources
16 MeSH Terms