Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 404

Publication Record

Connections

The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation.
Fischer K, Fenzl A, Liu D, Dyar KA, Kleinert M, Brielmeier M, Clemmensen C, Fedl A, Finan B, Gessner A, Jastroch M, Huang J, Keipert S, Klingenspor M, Brüning JC, Kneilling M, Maier FC, Othman AE, Pichler BJ, Pramme-Steinwachs I, Sachs S, Scheideler A, Thaiss WM, Uhlenhaut H, Ussar S, Woods SC, Zorn J, Stemmer K, Collins S, Diaz-Meco M, Moscat J, Tschöp MH, Müller TD
(2020) Nat Commun 11: 2306
MeSH Terms: Activating Transcription Factor 2, Adipogenesis, Adipose Tissue, Brown, Adipose Tissue, White, Animals, Cell Nucleus, Magnetic Resonance Imaging, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Obesity, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Positron Emission Tomography Computed Tomography, Protein Binding, Sequestosome-1 Protein, Uncoupling Protein 1, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added July 22, 2020
During β-adrenergic stimulation of brown adipose tissue (BAT), p38 phosphorylates the activating transcription factor 2 (ATF2) which then translocates to the nucleus to activate the expression of Ucp1 and Pgc-1α. The mechanisms underlying ATF2 target activation are unknown. Here we demonstrate that p62 (Sqstm1) binds to ATF2 to orchestrate activation of the Ucp1 enhancer and Pgc-1α promoter. P62 mice show reduced expression of Ucp1 and Pgc-1α with impaired ATF2 genomic binding. Modulation of Ucp1 and Pgc-1α expression through p62 regulation of ATF2 signaling is demonstrated in vitro and in vivo in p62 mice, global p62 and Ucp1-Cre p62 mice. BAT dysfunction resulting from p62 deficiency is manifest after birth and obesity subsequently develops despite normal food intake, intestinal nutrient absorption and locomotor activity. In summary, our data identify p62 as a master regulator of BAT function in that it controls the Ucp1 pathway through regulation of ATF2 genomic binding.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Neuronal L-Type Calcium Channel Signaling to the Nucleus Requires a Novel CaMKIIα-Shank3 Interaction.
Perfitt TL, Wang X, Dickerson MT, Stephenson JR, Nakagawa T, Jacobson DA, Colbran RJ
(2020) J Neurosci 40: 2000-2014
MeSH Terms: Animals, Calcium Channels, L-Type, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cell Nucleus, Gene Expression Regulation, Hippocampus, Mice, Mice, Inbred C57BL, Microfilament Proteins, Nerve Tissue Proteins, Neurons, Signal Transduction
Show Abstract · Added March 3, 2020
The activation of neuronal plasma membrane Ca channels stimulates many intracellular responses. Scaffolding proteins can preferentially couple specific Ca channels to distinct downstream outputs, such as increased gene expression, but the molecular mechanisms that underlie the exquisite specificity of these signaling pathways are incompletely understood. Here, we show that complexes containing CaMKII and Shank3, a postsynaptic scaffolding protein known to interact with L-type calcium channels (LTCCs), can be specifically coimmunoprecipitated from mouse forebrain extracts. Activated purified CaMKIIα also directly binds Shank3 between residues 829 and 1130. Mutation of Shank3 residues Arg-Arg-Lys to three alanines disrupts CaMKII binding and CaMKII association with Shank3 in heterologous cells. Our shRNA/rescue studies revealed that Shank3 binding to both CaMKII and LTCCs is important for increased phosphorylation of the nuclear CREB transcription factor and expression of c-Fos induced by depolarization of cultured hippocampal neurons. Thus, this novel CaMKII-Shank3 interaction is essential for the initiation of a specific long-range signal from LTCCs in the plasma membrane to the nucleus that is required for activity-dependent changes in neuronal gene expression during learning and memory. Precise neuronal expression of genes is essential for normal brain function. Proteins involved in signaling pathways that underlie activity-dependent gene expression, such as CaMKII, Shank3, and L-type calcium channels, are often mutated in multiple neuropsychiatric disorders. Shank3 and CaMKII were previously shown to bind L-type calcium channels, and we show here that Shank3 also binds to CaMKII. Our data show that each of these interactions is required for depolarization-induced phosphorylation of the CREB nuclear transcription factor, which stimulates the expression of c-Fos, a neuronal immediate early gene with key roles in synaptic plasticity, brain development, and behavior.
Copyright © 2020 the authors.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Mechanisms of nuclear mRNA export: A structural perspective.
Xie Y, Ren Y
(2019) Traffic 20: 829-840
MeSH Terms: Cell Nucleus, Cytoplasm, Humans, RNA Transport, RNA, Messenger
Show Abstract · Added March 3, 2020
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA-binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67•Mtr2/human NXF1•NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD-box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67•Mtr2/NXF1•NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
5 MeSH Terms
The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus.
Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, Zhang MZ, Hudson BG, Basak T, Vanacore RM, Zent R, Pozzi A
(2019) J Am Soc Nephrol 30: 1605-1624
MeSH Terms: Actins, Acute Kidney Injury, Animals, Biological Transport, Cell Line, Cell Nucleus, Chromatin, Collagen Type I, Collagen Type IV, Discoidin Domain Receptor 1, Humans, Kidney Tubules, Proximal, Male, Mice, Myosin Heavy Chains, Nuclear Localization Signals, Retinoblastoma-Binding Protein 4, SEC Translocation Channels, Transcription, Genetic
Show Abstract · Added May 10, 2020
BACKGROUND - The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors.
METHODS - To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation.
RESULTS - We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and -actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis.
CONCLUSIONS - These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.
Copyright © 2019 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Automated cell boundary and 3D nuclear segmentation of cells in suspension.
Kesler B, Li G, Thiemicke A, Venkat R, Neuert G
(2019) Sci Rep 9: 10237
MeSH Terms: Algorithms, Biological Phenomena, Cell Nucleus, Computational Biology, Image Processing, Computer-Assisted, Microscopy, Optical Imaging, Single-Cell Analysis, Staining and Labeling, Suspensions
Show Abstract · Added February 5, 2020
To characterize cell types, cellular functions and intracellular processes, an understanding of the differences between individual cells is required. Although microscopy approaches have made tremendous progress in imaging cells in different contexts, the analysis of these imaging data sets is a long-standing, unsolved problem. The few robust cell segmentation approaches that exist often rely on multiple cellular markers and complex time-consuming image analysis. Recently developed deep learning approaches can address some of these challenges, but they require tremendous amounts of data and well-curated reference data sets for algorithm training. We propose an alternative experimental and computational approach, called CellDissect, in which we first optimize specimen preparation and data acquisition prior to image processing to generate high quality images that are easier to analyze computationally. By focusing on fixed suspension and dissociated adherent cells, CellDissect relies only on widefield images to identify cell boundaries and nuclear staining to automatically segment cells in two dimensions and nuclei in three dimensions. This segmentation can be performed on a desktop computer or a computing cluster for higher throughput. We compare and evaluate the accuracy of different nuclear segmentation approaches against manual expert cell segmentation for different cell lines acquired with different imaging modalities.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Structural basis for influenza virus NS1 protein block of mRNA nuclear export.
Zhang K, Xie Y, Muñoz-Moreno R, Wang J, Zhang L, Esparza M, García-Sastre A, Fontoura BMA, Ren Y
(2019) Nat Microbiol 4: 1671-1679
MeSH Terms: A549 Cells, Active Transport, Cell Nucleus, Binding Sites, Cell Nucleus, Cells, Cultured, Crystallography, X-Ray, Humans, Influenza A virus, Influenza, Human, Models, Molecular, Multiprotein Complexes, Nuclear Pore Complex Proteins, Nucleocytoplasmic Transport Proteins, Protein Binding, RNA, Messenger, RNA-Binding Proteins, Viral Nonstructural Proteins
Show Abstract · Added March 3, 2020
Influenza viruses antagonize key immune defence mechanisms via the virulence factor non-structural protein 1 (NS1). A key mechanism of virulence by NS1 is blocking nuclear export of host messenger RNAs, including those encoding immune factors; however, the direct cellular target of NS1 and the mechanism of host mRNA export inhibition are not known. Here, we identify the target of NS1 as the mRNA export receptor complex, nuclear RNA export factor 1-nuclear transport factor 2-related export protein 1 (NXF1-NXT1), which is the principal receptor mediating docking and translocation of mRNAs through the nuclear pore complex via interactions with nucleoporins. We determined the crystal structure of NS1 in complex with NXF1-NXT1 at 3.8 Å resolution. The structure reveals that NS1 prevents binding of NXF1-NXT1 to nucleoporins, thereby inhibiting mRNA export through the nuclear pore complex into the cytoplasm for translation. We demonstrate that a mutant influenza virus deficient in binding NXF1-NXT1 does not block host mRNA export and is attenuated. This attenuation is marked by the release of mRNAs encoding immune factors from the nucleus. In sum, our study uncovers the molecular basis of a major nuclear function of influenza NS1 protein that causes potent blockage of host gene expression and contributes to inhibition of host immunity.
0 Communities
1 Members
0 Resources
MeSH Terms
Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential.
Reis-Sobreiro M, Chen JF, Novitskaya T, You S, Morley S, Steadman K, Gill NK, Eskaros A, Rotinen M, Chu CY, Chung LWK, Tanaka H, Yang W, Knudsen BS, Tseng HR, Rowat AC, Posadas EM, Zijlstra A, Di Vizio D, Freeman MR
(2018) Cancer Res 78: 6086-6097
MeSH Terms: Animals, Apoptosis, Biomarkers, Tumor, Cell Line, Tumor, Cell Movement, Cell Nucleus, Disease Progression, Gene Expression Regulation, Neoplastic, Humans, Male, Membrane Proteins, Mice, Mice, SCID, Neoplasm Invasiveness, Neoplasm Metastasis, Neoplastic Cells, Circulating, Nuclear Envelope, Nuclear Proteins, Prostatic Neoplasms
Show Abstract · Added April 10, 2019
Abnormalities in nuclear shape are a well-known feature of cancer, but their contribution to malignant progression remains poorly understood. Here, we show that depletion of the cytoskeletal regulator, Diaphanous-related formin 3 (DIAPH3), or the nuclear membrane-associated proteins, lamin A/C, in prostate and breast cancer cells, induces nuclear shape instability, with a corresponding gain in malignant properties, including secretion of extracellular vesicles that contain genomic material. This transformation is characterized by a reduction and/or mislocalization of the inner nuclear membrane protein, emerin. Consistent with this, depletion of emerin evokes nuclear shape instability and promotes metastasis. By visualizing emerin localization, evidence for nuclear shape instability was observed in cultured tumor cells, in experimental models of prostate cancer, in human prostate cancer tissues, and in circulating tumor cells from patients with metastatic disease. Quantitation of emerin mislocalization discriminated cancer from benign tissue and correlated with disease progression in a prostate cancer cohort. Taken together, these results identify emerin as a mediator of nuclear shape stability in cancer and show that destabilization of emerin can promote metastasis. This study identifies a novel mechanism integrating the control of nuclear structure with the metastatic phenotype, and our inclusion of two types of human specimens (cancer tissues and circulating tumor cells) demonstrates direct relevance to human cancer. http://cancerres.aacrjournals.org/content/canres/78/21/6086/F1.large.jpg .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Nuclear-Mitochondrial interactions influence susceptibility to HIV-associated neurocognitive impairment.
Smieszek S, Jia P, Samuels DC, Zhao Z, Barnholtz-Sloan J, Kaur H, Letendre S, Ellis R, Franklin DR, Hulgan T, Kallianpur A, Bush WS, CHARTER Study Group
(2019) Mitochondrion 46: 247-255
MeSH Terms: AIDS Dementia Complex, Cell Nucleus, Continental Population Groups, Genetic Association Studies, HIV Infections, Haplotypes, Humans, Mitochondria, Mitochondrial Proteins, Nuclear Proteins, Polymorphism, Single Nucleotide, Prospective Studies
Show Abstract · Added December 11, 2019
HIV-associated neurocognitive impairment (NCI) is a term established to capture a wide spectrum of HIV related neurocognitive deficits ranging in severity from asymptomatic to dementia. The genetic underpinnings of this complex phenotype are incompletely understood. Mitochondrial function has long been thought to play a role in neurodegeneration, along with iron metabolism and transport. In this work, we aimed to characterize the interplay of mitochondrial DNA (mtDNA) haplogroup and nuclear genetic associations to NCI phenotypes in the CHARTER cohort, encompassing 1025 individuals of European-descent, African-descent, or admixed Hispanic. We first employed a polygenic modeling approach to investigate the global effect of previous marginally associated nuclear SNPs, and to examine how the polygenic effect of these SNPs is influenced by mtDNA haplogroups. We see evidence of a significant interaction between nuclear SNPs en masse and mtDNA haplogroups within European-descent and African-descent individuals. Subsequently, we performed an analysis of each SNP by mtDNA haplogroup, and detected significant interactions between two nuclear SNPs (rs17160128 and rs12460243) and European haplogroups. These findings, which require validation in larger cohorts, indicate a potential new role for nuclear-mitochondrial DNA interactions in susceptibility to NCI and shed light onto the pathophysiology of this neurocognitive phenotype.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of in adipocyte metabolism.
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP
(2018) Sci Transl Med 10:
MeSH Terms: Adipocytes, Adipose Tissue, Cell Differentiation, Cell Nucleus, Gene Expression Regulation, Heterogeneous-Nuclear Ribonucleoprotein U, Humans, Lipids, Lipogenesis, PPAR gamma, RNA, Long Noncoding, RNA, Messenger, RNA-Binding Proteins, Transcription, Genetic
Show Abstract · Added April 2, 2019
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed ( = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, , was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis.
Sisti F, Wang S, Brandt SL, Glosson-Byers N, Mayo LD, Son YM, Sturgeon S, Filgueiras L, Jancar S, Wong H, Dela Cruz CS, Andrews N, Alves-Filho JC, Cunha FQ, Serezani CH
(2018) Sci Signal 11:
MeSH Terms: Animals, Cell Nucleus, Female, Gene Expression Profiling, Humans, Inflammation, Macrophages, Male, Mice, Inbred C57BL, Mice, Knockout, MicroRNAs, Myeloid Differentiation Factor 88, PTEN Phosphohydrolase, Peptides, RNA Interference, Regulon, Sepsis
Show Abstract · Added March 18, 2020
Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased expression in leukocytes. Myeloid-specific deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
MeSH Terms