Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 547

Publication Record

Connections

Probing biophysical sequence constraints within the transmembrane domains of rhodopsin by deep mutational scanning.
Penn WD, McKee AG, Kuntz CP, Woods H, Nash V, Gruenhagen TC, Roushar FJ, Chandak M, Hemmerich C, Rusch DB, Meiler J, Schlebach JP
(2020) Sci Adv 6: eaay7505
MeSH Terms: Cell Membrane, Gene Expression, HEK293 Cells, Humans, Hydrophobic and Hydrophilic Interactions, Lipid Bilayers, Models, Molecular, Mutation, Protein Domains, Protein Folding, Protein Structure, Secondary, Recombinant Proteins, Rhodopsin, Solubility, Thermodynamics
Show Abstract · Added March 21, 2020
Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains. To test this hypothesis, we used deep mutational scanning to compare the effects of 808 missense mutations on the plasma membrane expression of rhodopsin in HEK293T cells. Our results confirm that a higher proportion of mutations within TM7 (37%) decrease rhodopsin's plasma membrane expression relative to those within a hydrophobic TM domain (TM2, 25%). These results in conjunction with an evolutionary analysis suggest solvation energetics likely restricts the evolutionary sequence space of polar TM domains.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
0 Communities
1 Members
0 Resources
15 MeSH Terms
Quantum dots reveal heterogeneous membrane diffusivity and dynamic surface density polarization of dopamine transporter.
Kovtun O, Tomlinson ID, Ferguson RS, Rosenthal SJ
(2019) PLoS One 14: e0225339
MeSH Terms: Algorithms, Animals, Cell Membrane, Dopamine Plasma Membrane Transport Proteins, HEK293 Cells, Humans, Models, Theoretical, Quantum Dots, Reproducibility of Results, Structure-Activity Relationship
Show Abstract · Added March 30, 2020
The presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy. We demonstrate that Qdot-tagged DAT proteins exhibited highly heterogeneous membrane diffusivity dependent on the local membrane topography. We also show that Qdot-tagged DATs were localized away from the flat membrane regions and were dynamically retained in the membrane protrusions and cell edges for the duration of imaging. Single quantum dot tracking of wildtype DAT and its conformation-defective coding variants (R60A and W63A) revealed a significantly accelerated rate of dysfunctional DAT membrane diffusion. We believe our results warrant an in-depth investigation as to whether compromised membrane dynamics is a common feature of brain disorder-derived DAT mutants.
0 Communities
1 Members
0 Resources
MeSH Terms
Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways.
Cheung-Flynn J, Alvis BD, Hocking KM, Guth CM, Luo W, McCallister R, Chadalavada K, Polcz M, Komalavilas P, Brophy CM
(2019) PLoS One 14: e0220893
MeSH Terms: Adenosine Triphosphate, Animals, Aorta, Cell Membrane, Endothelial Cells, Humans, Inflammation, Intracellular Signaling Peptides and Proteins, Phosphorylation, Protein-Serine-Threonine Kinases, Rats, Receptors, Purinergic P2X7, Saline Solution, Saphenous Vein, Signal Transduction, Swine, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added March 3, 2020
Resuscitation with 0.9% Normal Saline (NS), a non-buffered acidic solution, leads to increased morbidity and mortality in the critically ill. The goal of this study was to determine the molecular mechanisms of endothelial injury after exposure to NS. The hypothesis of this investigation is that exposure of endothelium to NS would lead to loss of cell membrane integrity, resulting in release of ATP, activation of the purinergic receptor (P2X7R), and subsequent activation of stress activated signaling pathways and inflammation. Human saphenous vein endothelial cells (HSVEC) incubated in NS, but not buffered electrolyte solution (Plasma-Lyte, PL), exhibited abnormal morphology and increased release of lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and decreased transendothelial resistance (TEER), suggesting loss of membrane integrity. Incubation of intact rat aorta (RA) or human saphenous vein in NS but not PL led to impaired endothelial-dependent relaxation which was ameliorated by apyrase (hydrolyzes ATP) or SB203580 (p38 MAPK inhibitor). Exposure of HSVEC to NS but not PL led to activation of p38 MAPK and its downstream substrate, MAPKAP kinase 2 (MK2). Treatment of HSVEC with exogenous ATP led to interleukin 1β (IL-1β) release and increased vascular cell adhesion molecule (VCAM) expression. Treatment of RA with IL-1β led to impaired endothelial relaxation. IL-1β treatment of HSVEC led to increases in p38 MAPK and MK2 phosphorylation, and increased levels of arginase II. Incubation of porcine saphenous vein (PSV) in PL with pH adjusted to 6.0 or less also led to impaired endothelial function, suggesting that the acidic nature of NS is what contributes to endothelial dysfunction. Volume overload resuscitation in a porcine model after hemorrhage with NS, but not PL, led to acidosis and impaired endothelial function. These data suggest that endothelial dysfunction caused by exposure to acidic, non-buffered NS is associated with loss of membrane integrity, release of ATP, and is modulated by P2X7R-mediated inflammatory responses.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Reassessment of Exosome Composition.
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ
(2019) Cell 177: 428-445.e18
MeSH Terms: Annexin A1, Argonaute Proteins, Cell Line, Tumor, Cell Membrane, Cell-Derived Microparticles, DNA, Exosomes, Extracellular Vesicles, Female, Humans, Lysosomes, Male, Proteins, RNA
Show Abstract · Added March 3, 2020
The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins, and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1-4, glycolytic enzymes, and cytoskeletal proteins were not detected in exosomes. We identify annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Protein kinase A-mediated phosphorylation of naked cuticle homolog 2 stimulates cell-surface delivery of transforming growth factor-α for epidermal growth factor receptor transactivation.
Cao Z, Singh B, Li C, Markham NO, Carrington LJ, Franklin JL, Graves-Deal R, Kennedy EJ, Goldenring JR, Coffey RJ
(2019) Traffic 20: 357-368
MeSH Terms: A Kinase Anchor Proteins, Adaptor Proteins, Signal Transducing, Animals, Caco-2 Cells, Calcium-Binding Proteins, Cell Cycle Proteins, Cell Membrane, Cyclic AMP-Dependent Protein Kinases, Dinoprostone, Dogs, ErbB Receptors, HEK293 Cells, Humans, Madin Darby Canine Kidney Cells, Protein Transport, Signal Transduction, Transforming Growth Factor alpha, Vasoactive Intestinal Peptide
Show Abstract · Added March 3, 2020
The classic mode of G protein-coupled receptor (GPCR)-mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)-mediated cleavage of plasma membrane-anchored EGFR ligands. Herein, we show that the Gαs-activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E (PGE ) transactivate EGFR through increased cell-surface delivery of the EGFR ligand transforming growth factor-α (TGFα) in polarizing madin-darby canine kidney (MDCK) and Caco-2 cells. This is achieved by PKA-mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα-containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser-223, a process that is facilitated by the molecular scaffold A-kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell-surface delivery of TGFα and increased EGFR activation. Thus, GPCR-triggered, PKA/AKAP12/NKD2-regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.
© 2019 The Authors. Traffic published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
18 MeSH Terms
A dileucine motif in the COOH-terminal domain of NKCC1 targets the cotransporter to the plasma membrane.
Koumangoye R, Omer S, Delpire E
(2019) Am J Physiol Cell Physiol 316: C545-C558
MeSH Terms: Animals, Cell Membrane, Dogs, Leucine, Madin Darby Canine Kidney Cells, Peptide Fragments, Protein Transport, Solute Carrier Family 12, Member 2
Show Abstract · Added April 2, 2019
Na-K-2Cl cotransporter-1 (NKCC1) mediates the electroneutral transport of Na, K, and Cl and is normally localized to the basolateral membrane of polarized epithelial cells. We recently reported the first known solute carrier family 12 member 2 ( SLC12A2) mutation (we call NKCC1-DFX) that causes epithelial dysfunction in an undiagnosed disease program case. The heterozygous mutation leads to truncation of the COOH-terminal tail of the cotransporter, resulting in both mutant and wild-type cotransporters being mistrafficked to the apical membrane of polarized epithelial cells. Here we demonstrate by using consecutive truncations and site-directed mutagenesis of the COOH-terminal domain of NKCC1 that truncation of NKCC1 COOH domain uncouples the cotransporter from the lateral membrane. We identify a dileucine motif that, when mutated, leads to cotransporter accumulation in the cytoplasm and mistrafficking to the apical/subapical region of epithelial cells, thereby recapitulating the phenotype observed with the patient mutation. We show that truncation deletion and LL substitution mutants are trafficked out of the endoplasmic reticulum and trans-Golgi network but accumulate in early and late endosomes where they are degraded.
0 Communities
1 Members
0 Resources
8 MeSH Terms
The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis.
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ
(2019) Cell Rep 26: 2540-2548.e4
MeSH Terms: Animals, COS Cells, Cell Cycle Proteins, Cell Membrane, Chlorocebus aethiops, Cytokinesis, GTPase-Activating Proteins, Microscopy, Confocal, Protein Domains, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Transfection
Show Abstract · Added April 10, 2019
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Chlorocebus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
An alternative N-terminal fold of the intestine-specific annexin A13a induces dimerization and regulates membrane-binding.
McCulloch KM, Yamakawa I, Shifrin DA, McConnell RE, Foegeding NJ, Singh PK, Mao S, Tyska MJ, Iverson TM
(2019) J Biol Chem 294: 3454-3463
MeSH Terms: Animals, Annexins, Cell Membrane, Epithelial Cells, Humans, Hydrogen-Ion Concentration, Intestinal Mucosa, Intestines, Liposomes, Mice, Models, Molecular, Organ Specificity, Protein Binding, Protein Conformation, alpha-Helical, Protein Multimerization, Protein Structure, Quaternary, Protein Transport
Show Abstract · Added April 1, 2019
Annexin proteins function as Ca-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.
© 2019 McCulloch et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
LCP1 preferentially binds clasped αMβ2 integrin and attenuates leukocyte adhesion under flow.
Tseng HY, Samarelli AV, Kammerer P, Scholze S, Ziegler T, Immler R, Zent R, Sperandio M, Sanders CR, Fässler R, Böttcher RT
(2018) J Cell Sci 131:
MeSH Terms: Animals, Cell Adhesion, Cell Membrane, Cytoplasm, HEK293 Cells, Humans, Leukocytes, Macrophage-1 Antigen, Mice, Mice, Inbred C57BL, Microfilament Proteins, Protein Binding, Protein Conformation, RAW 264.7 Cells
Show Abstract · Added November 21, 2018
Integrins are α/β heterodimers that interconvert between inactive and active states. In the active state the α/β cytoplasmic domains recruit integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the inactive state the α/β TMcyto domains bind integrin-inactivating proteins, resulting in the association of the TMcyto domains (clasped TMcyto). Here, we report the isolation of integrin cytoplasmic tail interactors using either lipid bicelle-incorporated integrin TMcyto domains (α5, αM, αIIb, β1, β2 and β3 integrin TMcyto) or a clasped, lipid bicelle-incorporated αMβ2 TMcyto. Among the proteins found to preferentially bind clasped rather than the isolated αM and β2 subunits was L-plastin (LCP1, also known as plastin-2), which binds to and maintains the inactive state of αMβ2 integrin and thereby regulates leukocyte adhesion to integrin ligands under flow. Our findings offer a global view on cytoplasmic proteins interacting with different integrins and provide evidence for the existence of conformation-specific integrin interactors.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms