Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 57

Publication Record

Connections

Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8.
Matthewman C, Johnson CK, Miller DM, Bianchi L
(2018) Am J Physiol Cell Physiol 315: C155-C163
MeSH Terms: Amino Acid Sequence, Animals, Calcium, Cell Death, Cell Membrane Permeability, Epithelial Sodium Channels, Magnesium, Membrane Proteins, Mutation, Oocytes, Protein Transport, Sodium, Xenopus laevis
Show Abstract · Added March 26, 2019
UNC-8 and MEC-4 are two members of the degenerin/epithelial Na channel (DEG/ENaC) family of voltage-independent Na channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Capermeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant.
Tian X, Li H, Jiang X, Xie J, Gore JC, Xu J
(2017) J Magn Reson 275: 29-37
MeSH Terms: Algorithms, Cell Biology, Cell Membrane Permeability, Cell Size, Cells, Computer Simulation, Diffusion Magnetic Resonance Imaging, Electromagnetic Fields, Humans, K562 Cells, Kinetics, Saponins, Signal-To-Noise Ratio, Water
Show Abstract · Added April 10, 2017
Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant k, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20μm), a broad range of k values (0.02-30s) and different SNR's, and simulated k's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured k's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of k especially when it is smaller than 10s, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates k even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth k. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant k, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of k, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping k in practice.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Identification and Functional Assessment of Age-Dependent Truncations to Cx46 and Cx50 in the Human Lens.
Slavi N, Wang Z, Harvey L, Schey KL, Srinivas M
(2016) Invest Ophthalmol Vis Sci 57: 5714-5722
MeSH Terms: Aging, Cataract, Cell Membrane Permeability, Cells, Cultured, Connexins, Humans, Lens, Crystalline, Membrane Glycoproteins, Middle Aged, Patch-Clamp Techniques, Tandem Mass Spectrometry
Show Abstract · Added May 6, 2017
Purpose - Many proteins in the lens undergo extensive posttranslational modifications (PTMs) with age, leading to alterations in their function. The extent to which lens gap junction proteins, Cx46 and Cx50, accumulate PTMs with aging is not known. In this study, we identified truncations in Cx46 and Cx50 in the human lens using mass spectrometry. We also examined the effect of truncations on channel function using electrophysiological measurements.
Methods - Human lenses were dissected into cortex, outer nucleus, and nucleus regions, and fiber cell membranes were subjected to trypsin digestion. Tryptic peptides were analyzed by liquid chromatography (LC)-electrospray tandem mass spectrometry (ESI/MS/MS). Effects of truncations on channel conductance, permeability, and gating were assessed in transfected cells.
Results - Cleavage sites were identified in the C-terminus, the cytoplasmic loop, and the N-terminus of Cx46 and Cx50. Levels of C-terminal truncations, which were found at residues 238 to 251 in Cx46 and at residues 238 to 253 and 274 to 284 in Cx50, were similar in different lens regions. In contrast, levels of truncations in cytoplasmic loop and N-terminal domains of Cx46 and Cx50 increased dramatically from outer cortex to nucleus. Most of the C-terminally truncated proteins were functional, whereas truncations in the cytoplasmic loop did not result in the formation of functional channels.
Conclusions - Accumulation of cytoplasmic loop and N-terminal truncations in the core might lead to decreases in coupling with age. This reduction is expected to lead to an increase in intracellular calcium and a decrease in levels of glutathione in the nucleus. These changes may ultimately lead to age-related nuclear cataracts.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI.
Li H, Jiang X, Xie J, Gore JC, Xu J
(2017) Magn Reson Med 77: 2239-2249
MeSH Terms: Animals, Artifacts, Body Water, Cell Line, Tumor, Cell Membrane, Cell Membrane Permeability, Diffusion Magnetic Resonance Imaging, Mice, Neoplasms, Experimental, Reproducibility of Results, Sensitivity and Specificity
Show Abstract · Added November 1, 2016
PURPOSE - To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods.
METHODS - Computer simulations were performed to incorporate a broad range of intracellular water life times τ (50-∞ ms), cell diameters d (5-15 μm), and intrinsic diffusion coefficient D (0.6-2 μm /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values.
RESULTS - Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction f is intrinsically underestimated due to transcytolemmal water exchange. D can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro.
CONCLUSION - For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and D with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but f is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
© 2016 International Society for Magnetic Resonance in Medicine.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Cell-free hemoglobin: a novel mediator of acute lung injury.
Shaver CM, Upchurch CP, Janz DR, Grove BS, Putz ND, Wickersham NE, Dikalov SI, Ware LB, Bastarache JA
(2016) Am J Physiol Lung Cell Mol Physiol 310: L532-41
MeSH Terms: Acute Lung Injury, Alveolar Epithelial Cells, Animals, Biomarkers, Cell Line, Cell Membrane Permeability, Cytokines, Hemoglobins, Humans, Lipopolysaccharides, Lung, Mice, Inbred C57BL, Respiratory Distress Syndrome, Adult
Show Abstract · Added February 17, 2016
Patients with the acute respiratory distress syndrome (ARDS) have elevated levels of cell-free hemoglobin (CFH) in the air space, but the contribution of CFH to the pathogenesis of acute lung injury is unknown. In the present study, we demonstrate that levels of CFH in the air space correlate with measures of alveolar-capillary barrier dysfunction in humans with ARDS (r = 0.89, P < 0.001) and in mice with ventilator-induced acute lung injury (r = 0.89, P < 0.001). To investigate the specific contribution of CFH to ARDS, we studied the impact of purified CFH in the mouse lung and on cultured mouse lung epithelial (MLE-12) cells. Intratracheal delivery of CFH in mice causes acute lung injury with air space inflammation and alveolar-capillary barrier disruption. Similarly, in MLE-12 cells, CFH increases proinflammatory cytokine expression and increases paracellular permeability as measured by electrical cell-substrate impedance sensing. Next, to determine whether these effects are mediated by the iron-containing heme moiety of CFH, we treated mice with intratracheal hemin, the chloride salt of heme, and found that hemin was sufficient to increase alveolar permeability but failed to induce proinflammatory cytokine expression or epithelial cell injury. Together, these data identify CFH in the air space as a previously unrecognized driver of lung epithelial injury in human and experimental ARDS and suggest that CFH and hemin may contribute to ARDS through different mechanisms. Interventions targeting CFH and heme in the air space could provide a new therapeutic approach for ARDS.
Copyright © 2016 the American Physiological Society.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Channel Activity of Cardiac Ryanodine Receptors (RyR2) Determines Potency and Efficacy of Flecainide and R-Propafenone against Arrhythmogenic Calcium Waves in Ventricular Cardiomyocytes.
Savio-Galimberti E, Knollmann BC
(2015) PLoS One 10: e0131179
MeSH Terms: Animals, Arrhythmias, Cardiac, Caffeine, Calcium, Calcium Signaling, Calsequestrin, Cell Membrane Permeability, Flecainide, Heart Ventricles, Humans, Inhibitory Concentration 50, Male, Mice, Inbred C57BL, Myocytes, Cardiac, Propafenone, Rabbits, Ryanodine Receptor Calcium Release Channel, Tetracaine
Show Abstract · Added February 22, 2016
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Measurements.
Li H, Jiang X, Xie J, McIntyre JO, Gore JC, Xu J
(2016) Magn Reson Med 75: 1927-34
MeSH Terms: Algorithms, Cell Membrane Permeability, Computer Simulation, Diffusion Magnetic Resonance Imaging, Humans, Image Interpretation, Computer-Assisted, K562 Cells, Linear Models, Oscillometry, Permeability, Saponins, Signal Processing, Computer-Assisted, Water
Show Abstract · Added July 28, 2015
PURPOSE - To investigate the influence of cell membrane permeability on diffusion measurements over a broad range of diffusion times.
METHODS - Human myelogenous leukemia K562 cells were cultured and treated with saponin to selectively alter cell membrane permeability, resulting in a broad physiologically relevant range of 0.011-0.044 μm/ms. Apparent diffusion coefficient (ADC) values were acquired with the effective diffusion time (Δeff ) ranging from 0.42 to 3000 ms. Cosine-modulated oscillating gradient spin echo (OGSE) measurements were performed to achieve short Δeff from 0.42 to 5 ms, while stimulated echo acquisitions were used to achieve long Δeff from 11 to 2999 ms. Computer simulations were also performed to support the experimental results.
RESULTS - Both computer simulations and experiments in vitro showed that the influence of membrane permeability on diffusion MR measurements is highly dependent on the choice of diffusion time, and it is negligible only when the diffusion time is at least one order of magnitude smaller than the intracellular exchange lifetime.
CONCLUSION - The influence of cell membrane permeability on the measured ADCs is negligible in OGSE measurements at moderately high frequencies. By contrast, cell membrane permeability has a significant influence on ADC and quantitative diffusion measurements at low frequencies such as those sampled using conventional pulsed gradient methods.
© 2015 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
13 MeSH Terms
The integrin β1 subunit regulates paracellular permeability of kidney proximal tubule cells.
Elias BC, Mathew S, Srichai MB, Palamuttam R, Bulus N, Mernaugh G, Singh AB, Sanders CR, Harris RC, Pozzi A, Zent R
(2014) J Biol Chem 289: 8532-44
MeSH Terms: Animals, Cadherins, Cell Membrane Permeability, Cells, Cultured, Claudin-2, Down-Regulation, Epithelial Cells, Gene Deletion, Integrin beta1, Kidney Tubules, Proximal, Mice, Permeability, Up-Regulation, Urine
Show Abstract · Added February 25, 2014
Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin β1 subunit in these cells converts them from a "loose" epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a "tight" epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin β1 cytoplasmic tail and does not entail β1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the β1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin β1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells.
1 Communities
5 Members
1 Resources
14 MeSH Terms
Ascorbate reverses high glucose- and RAGE-induced leak of the endothelial permeability barrier.
Meredith ME, Qu ZC, May JM
(2014) Biochem Biophys Res Commun 445: 30-5
MeSH Terms: Acetylcysteine, Animals, Antioxidants, Ascorbic Acid, Benzamides, Cell Line, Cell Membrane Permeability, Cells, Cultured, Chromans, Cyclic N-Oxides, Dithiothreitol, Dose-Response Relationship, Drug, Endothelial Cells, Glucose, Glycation End Products, Advanced, HMGB1 Protein, Human Umbilical Vein Endothelial Cells, Humans, Mice, Receptor for Advanced Glycation End Products, Receptors, Immunologic, Serum Albumin, Bovine, Spin Labels
Show Abstract · Added May 27, 2014
High glucose concentrations due to diabetes increase leakage of plasma constituents across the endothelial permeability barrier. We sought to determine whether vitamin C, or ascorbic acid (ascorbate), could reverse such high glucose-induced increases in endothelial barrier permeability. Human umbilical vein endothelial cells and two brain endothelial cell lines cultured at 25 mM glucose showed increases in endothelial barrier permeability to radiolabeled inulin compared to cells cultured at 5mM glucose. Acute loading of the cells for 30-60 min with ascorbate before the permeability assay prevented the high glucose-induced increase in permeability and decreased basal permeability at 5mM glucose. High glucose-induced barrier leakage was mediated largely by activation of the receptor for advanced glycation end products (RAGE), since it was prevented by RAGE blockade and mimicked by RAGE ligands. Intracellular ascorbate completely prevented RAGE ligand-induced increases in barrier permeability. The high glucose-induced increase in endothelial barrier permeability was also acutely decreased by several cell-penetrant antioxidants, suggesting that at least part of the ascorbate effect could be due to its ability to act as an antioxidant.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function.
Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM, Stehle T, Dermody TS, Schaefer SA, Hall RA, Nusrat A, Parkos CA
(2013) Mol Biol Cell 24: 2849-60
MeSH Terms: Animals, Capsid Proteins, Cell Adhesion Molecules, Cell Line, Cell Membrane Permeability, Cell Polarity, Cytoskeleton, Down-Regulation, Endocytosis, Epithelial Cells, Guanine Nucleotide Exchange Factors, Humans, Mice, Microfilament Proteins, Models, Biological, Molecular Weight, Nerve Tissue Proteins, Protein Binding, Protein Transport, Receptors, Cell Surface, Tight Junctions, Zonula Occludens-2 Protein, rap1 GTP-Binding Proteins, ras Proteins, rhoA GTP-Binding Protein
Show Abstract · Added December 10, 2013
Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA-mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A-deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.
0 Communities
1 Members
0 Resources
25 MeSH Terms