Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 542

Publication Record

Connections

Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture.
Cheng FY, Fleming JT, Chiang C
(2018) Dev Biol 440: 152-166
MeSH Terms: Animals, Astrocytes, Cell Differentiation, Cell Division, Cell Proliferation, Cells, Cultured, Cerebellar Cortex, Cerebellar Neoplasms, Cerebellum, Developmental Disabilities, Hedgehog Proteins, Mice, Nervous System Malformations, Neural Stem Cells, Neuroglia, Neurons, Purkinje Cells, Signal Transduction, Wnt Signaling Pathway
Show Abstract · Added April 10, 2019
Neuronal-glial relationships play a critical role in the maintenance of central nervous system architecture and neuronal specification. A deeper understanding of these relationships can elucidate cellular cross-talk capable of sustaining proper development of neural tissues. In the cerebellum, cerebellar granule neuron precursors (CGNPs) proliferate in response to Purkinje neuron-derived Sonic hedgehog (Shh) before ultimately exiting the cell cycle and migrating radially along Bergmann glial fibers. However, the function of Bergmann glia in CGNP proliferation remains not well defined. Interestingly, the Hh pathway is also activated in Bergmann glia, but the role of Shh signaling in these cells is unknown. In this study, we show that specific ablation of Shh signaling using the tamoxifen-inducible TNC line to eliminate Shh pathway activator Smoothened in Bergmann glia is sufficient to cause severe cerebellar hypoplasia and a significant reduction in CGNP proliferation. TNC; Smo (Smo) mice demonstrate an obvious reduction in cerebellar size within two days of ablation of Shh signaling. Mutant cerebella have severely reduced proliferation and increased differentiation of CGNPs due to a significant decrease in Shh activity and concomitant activation of Wnt signaling in Smo CGNPs, suggesting that this pathway is involved in cross-talk with the Shh pathway in regulating CGNP proliferation. In addition, Purkinje cells are ectopically located, their dendrites stunted, and the Bergmann glial network disorganized. Collectively, these data demonstrate a previously unappreciated role for Bergmann glial Shh signaling activity in the proliferation of CGNPs and proper maintenance of cerebellar architecture.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Cdk1-dependent phosphoinhibition of a formin-F-BAR interaction opposes cytokinetic contractile ring formation.
Willet AH, Bohnert KA, Gould KL
(2018) Mol Biol Cell 29: 713-721
MeSH Terms: Actin Cytoskeleton, Actins, CDC2 Protein Kinase, Cell Cycle Proteins, Cell Division, Cytokinesis, Cytoskeletal Proteins, GTP-Binding Proteins, Phosphorylation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 14, 2018
In , cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). A single essential formin, Cdc12, localizes to the cell middle upon mitotic onset and nucleates the F-actin of the CR. Cdc12 medial recruitment is mediated in part by its direct binding to the F-BAR scaffold Cdc15. Given that Cdc12 is hyperphosphorylated in M phase, we explored whether Cdc12 phosphoregulation impacts its association with Cdc15 during mitosis. We found that Cdk1, a major mitotic kinase, phosphorylates Cdc12 on six N-terminal residues near the Cdc15-binding site, and phosphorylation on these sites inhibits its interaction with the Cdc15 F-BAR domain. Consistent with this finding, a mutant with all six Cdk1 sites changed to phosphomimetic residues () displays phenotypes similar to , in which the Cdc15-binding motif is disrupted; both show reduced Cdc12 at the CR and delayed CR formation. Together, these results indicate that Cdk1 phosphorylation of formin Cdc12 antagonizes its interaction with Cdc15 and thereby opposes Cdc12's CR localization. These results are consistent with a general role for Cdk1 in inhibiting cytokinesis until chromosome segregation is complete.
© 2018 Willet et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
11 MeSH Terms
Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex.
Ryan KE, Kim PS, Fleming JT, Brignola E, Cheng FY, Litingtung Y, Chiang C
(2017) Dev Biol 432: 165-177
MeSH Terms: Animals, Cell Differentiation, Cell Division, Cell Movement, Cerebellar Cortex, Cytoplasmic Granules, Hedgehog Proteins, Mice, Nerve Tissue Proteins, Neurons, Organogenesis, Protein-Serine-Threonine Kinases, Signal Transduction
Show Abstract · Added April 10, 2019
Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Nanoscale architecture of the contractile ring.
McDonald NA, Lind AL, Smith SE, Li R, Gould KL
(2017) Elife 6:
MeSH Terms: Cell Cycle Proteins, Cell Division, Cell Membrane, Cytoplasm, Fluorescence Resonance Energy Transfer, Macromolecular Substances, Microscopy, Fluorescence, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 14, 2018
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Nup100 regulates replicative life span by mediating the nuclear export of specific tRNAs.
Lord CL, Ospovat O, Wente SR
(2017) RNA 23: 365-377
MeSH Terms: Active Transport, Cell Nucleus, Basic-Leucine Zipper Transcription Factors, Blotting, Northern, Cell Division, Cell Nucleus, Culture Media, Gene Expression Regulation, Fungal, In Situ Hybridization, Fluorescence, Karyopherins, Nuclear Pore, Nuclear Pore Complex Proteins, RNA, Fungal, RNA, Transfer, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors
Show Abstract · Added April 14, 2017
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of We previously reported that deletion of the nonessential gene increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of Δ mutants. Protein levels of the transcription factor Gcn4 are increased when is deleted, and is required for the elevated life spans of Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of Δ and Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the life span.
© 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
0 Communities
1 Members
0 Resources
16 MeSH Terms
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin.
Landino J, Ohi R
(2016) Curr Biol 26: 698-706
MeSH Terms: Actin Cytoskeleton, Actins, Anaphase, Cell Division, Cell Line, Cytokinesis, HeLa Cells, Humans, Microtubules, Myosin Type II
Show Abstract · Added April 18, 2017
The final steps of cell division are tightly coordinated in space and time, but whether mechanisms exist to couple the actin and microtubule (MT) cytoskeletons during anaphase and cytokinesis (C phase) is largely unknown. During anaphase, MTs are incorporated into an anti-parallel array termed the spindle midzone (midzone MTs), whereas F-actin and non-muscle myosin II, together with other factors, organize into the cleavage furrow [1]. Previous studies in somatic cells have shown that midzone MTs become highly stable after furrows have begun ingression [2], indicating that furrow-to-MT communication may occur. Midzone formation is also inhibited in fly spermatocytes that fail to form a cleavage furrow [3] and during monopolar cytokinesis when myosin contractility is blocked by blebbistatin [4]. We show here that midzone MT stabilization is dependent on actomyosin contraction, suggesting that there is active coordination between furrow ingression and microtubule dynamics. Midzone microtubule stabilization also depends on the kinase activity of Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC), uncovering a feedback mechanism that couples furrowing with microtubule dynamics. We further show that the CPC scaffolding protein INCENP (inner centromere protein) binds actin, an interaction that is important for cytokinesis and for midzone MT stabilization following furrow ingression. Stabilization of midzone MTs with low amounts of Taxol rescues cytokinesis in INCENP actin-binding mutant-expressing cells. Collectively, our work demonstrates that the actin and microtubule cytoskeletons are coordinated during cytokinesis and suggests that the CPC is integral for coupling furrow ingression with midzone microtubule stabilization.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles.
Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG
(2015) J Cell Biol 211: 653-68
MeSH Terms: Actomyosin, Cell Cycle Proteins, Cell Division, Cytokinesis, Cytoskeletal Proteins, GTP-Binding Proteins, Phosphorylation, Protein Kinases, Protein-Serine-Threonine Kinases, Protein-Tyrosine Kinases, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added February 4, 2016
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
© 2015 Ullal et al.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.
Willet AH, McDonald NA, Gould KL
(2015) Curr Opin Microbiol 28: 46-52
MeSH Terms: Actins, Cell Division, Cell Wall, Cytokinesis, Cytoskeletal Proteins, Gene Expression Regulation, Fungal, Myosins, Profilins, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added February 4, 2016
The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells.
Sigulinsky CL, German ML, Leung AM, Clark AM, Yun S, Levine EM
(2015) Neural Dev 10: 12
MeSH Terms: Animals, Cell Division, Chimera, Embryo Transfer, Female, Genes, Reporter, Homeodomain Proteins, LIM-Homeodomain Proteins, Male, Mice, Mice, Transgenic, Microphthalmia-Associated Transcription Factor, Mosaicism, Neural Stem Cells, Neurogenesis, Neuroglia, Organ Specificity, Retina, Retinal Ganglion Cells, Transcription Factors
Show Abstract · Added November 2, 2015
BACKGROUND - Vertebrate retinal development is a complex process, requiring the specification and maintenance of retinal identity, proliferative expansion of retinal progenitor cells (RPCs), and their differentiation into retinal neurons and glia. The homeobox gene Vsx2 is expressed in RPCs and required for the proper execution of this retinal program. However, our understanding of the mechanisms by which Vsx2 does this is still rudimentary. To define the autonomy requirements for Vsx2 in the regulation of RPC properties, we generated chimeric mouse embryos comprised of wild-type and Vsx2-deficient cells.
RESULTS - We show that Vsx2 maintains retinal identity in part through the cell-autonomous repression of the retinal pigment epithelium determinant Mitf, and that Lhx2 is required cell autonomously for the ectopic Mitf expression in Vsx2-deficient cells. We also found significant cell-nonautonomous contributions to Vsx2-mediated regulation of RPC proliferation, pointing to an important role for Vsx2 in establishing a growth-promoting extracellular environment. Additionally, we report a cell-autonomous requirement for Vsx2 in controlling when neurogenesis is initiated, indicating that Vsx2 is an important mediator of neurogenic competence. Finally, the distribution of wild-type cells shifted away from RPCs and toward retinal ganglion cell precursors in patches of high Vsx2-deficient cell density to potentially compensate for the lack of fated precursors in these areas.
CONCLUSIONS - Through the generation and analysis of genetic chimeras, we demonstrate that Vsx2 utilizes both cell-autonomous and cell-nonautonomous mechanisms to regulate progenitor properties in the embryonic retina. Importantly, Vsx2's role in regulating Mitf is in part separable from its role in promoting proliferation, and proliferation is excluded as the intrinsic timer that determines when neurogenesis is initiated. These findings highlight the complexity of Vsx2 function during retinal development and provide a framework for identifying the molecular mechanisms mediating these functions.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains.
Chen JS, Beckley JR, McDonald NA, Ren L, Mangione M, Jang SJ, Elmore ZC, Rachfall N, Feoktistova A, Jones CM, Willet AH, Guillen R, Bitton DA, Bähler J, Jensen MA, Rhind N, Gould KL
(2014) G3 (Bethesda) 5: 361-70
MeSH Terms: Cell Division, DNA Damage, Gene Deletion, Genes, Fungal, Schizosaccharomyces
Show Abstract · Added January 20, 2015
Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.
Copyright © 2015 Chen et al.
0 Communities
1 Members
0 Resources
5 MeSH Terms