Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 159

Publication Record

Connections

Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux.
Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD
(2019) J Biol Chem 294: 3081-3090
MeSH Terms: Animals, Aspartate Aminotransferases, Cell Death, Cell Line, Citric Acid Cycle, Extracellular Space, Glutamine, Hepatocytes, Ketoglutaric Acids, Male, Oxidative Stress, Oxygen, Palmitates, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 28, 2019
Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.
© 2019 Egnatchik et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Reporting of immune checkpoint inhibitor-associated myocarditis - Authors' reply.
Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB
(2018) Lancet 392: 384-385
MeSH Terms: Antibodies, Monoclonal, Humans, Myocarditis, Programmed Cell Death 1 Receptor
Added October 1, 2018
0 Communities
1 Members
0 Resources
MeSH Terms
Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8.
Matthewman C, Johnson CK, Miller DM, Bianchi L
(2018) Am J Physiol Cell Physiol 315: C155-C163
MeSH Terms: Amino Acid Sequence, Animals, Calcium, Cell Death, Cell Membrane Permeability, Epithelial Sodium Channels, Magnesium, Membrane Proteins, Mutation, Oocytes, Protein Transport, Sodium, Xenopus laevis
Show Abstract · Added March 26, 2019
UNC-8 and MEC-4 are two members of the degenerin/epithelial Na channel (DEG/ENaC) family of voltage-independent Na channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Capermeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.
0 Communities
1 Members
0 Resources
13 MeSH Terms
A Critical Need for Better Cancer Immunotherapy Models: Are Organotypic Tumor Spheroid Cultures the Answer?
Balko JM, Sosman JA
(2018) Cancer Discov 8: 143-145
MeSH Terms: Animals, Humans, Immunotherapy, Mice, Neoplasms, Programmed Cell Death 1 Receptor
Show Abstract · Added March 14, 2018
Immunotherapy has transformed the therapeutic landscape of cancer, but the preclinical evaluation of combination approaches that will deepen and broaden its clinical benefit has lagged far behind due to the lack of expedient and easily accessible human systems. In this issue, Jenkins and colleagues and Deng and colleagues report the use of organotypic cultures of tumors derived from mice and humans containing both tumor cells and cells from their local immune microenvironment to recapitulate the use of immune checkpoint inhibitors and extend the application of this system to therapeutic combinations of immune checkpoint blockade and molecularly targeted agents. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.
Dos Santos AA, López-Granero C, Farina M, Rocha JBT, Bowman AB, Aschner M
(2018) Food Chem Toxicol 113: 328-336
MeSH Terms: Animals, Astrocytes, Caspase 3, Caspase 9, Cell Death, Cells, Cultured, Enzyme Activation, Lim Kinases, Methylmercury Compounds, Mice, Inbred C57BL, Myosin-Light-Chain Phosphatase, Oxidative Stress, Phosphorylation, Proteolysis, rho-Associated Kinases
Show Abstract · Added April 11, 2018
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Copyright © 2018. Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer.
Hormuth DA, Weis JA, Barnes SL, Miga MI, Quaranta V, Yankeelov TE
(2018) Int J Radiat Oncol Biol Phys 100: 1270-1279
MeSH Terms: Animals, Brain Neoplasms, Cell Death, Cell Proliferation, Contrast Media, Cranial Irradiation, Diffusion Magnetic Resonance Imaging, Disease Models, Animal, Female, Glioma, Magnetic Resonance Imaging, Models, Biological, Radiation Dosage, Rats, Rats, Wistar, Treatment Outcome, Tumor Burden
Show Abstract · Added July 23, 2018
PURPOSE - To develop and investigate a set of biophysical models based on a mechanically coupled reaction-diffusion model of the spatiotemporal evolution of tumor growth after radiation therapy.
METHODS AND MATERIALS - Post-radiation therapy response is modeled using a cell death model (M), a reduced proliferation rate model (M), and cell death and reduced proliferation model (M). To evaluate each model, rats (n = 12) with C6 gliomas were imaged with diffusion-weighted magnetic resonance imaging (MRI) and contrast-enhanced MRI at 7 time points over 2 weeks. Rats received either 20 or 40 Gy between the third and fourth imaging time point. Diffusion-weighted MRI was used to estimate tumor cell number within enhancing regions in contrast-enhanced MRI data. Each model was fit to the spatiotemporal evolution of tumor cell number from time point 1 to time point 5 to estimate model parameters. The estimated model parameters were then used to predict tumor growth at the final 2 imaging time points. The model prediction was evaluated by calculating the error in tumor volume estimates, average surface distance, and voxel-based cell number.
RESULTS - For both the rats treated with either 20 or 40 Gy, significantly lower error in tumor volume, average surface distance, and voxel-based cell number was observed for the M and M models compared with the M model. The M model fit, however, had significantly lower sum squared error compared with the M and M models.
CONCLUSIONS - The results of this study indicate that for both doses, the M and M models result in accurate predictions of tumor growth, whereas the M model poorly describes response to radiation therapy.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.
Fernando LP, Lewis JS, Evans BC, Duvall CL, Keselowsky BG
(2018) J Biomed Mater Res A 106: 1022-1033
MeSH Terms: Acrylic Resins, Animals, CHO Cells, Cell Death, Cell Membrane, Cricetinae, Cricetulus, Cytosol, Dendritic Cells, Endocytosis, Endosomes, Humans, Hydrogen-Ion Concentration, Mice, Inbred C57BL, Microspheres, Particle Size, Polylactic Acid-Polyglycolic Acid Copolymer, Proton Magnetic Resonance Spectroscopy
Show Abstract · Added March 14, 2018
Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Quantitative Mass Spectrometry Analysis of PD-L1 Protein Expression, -glycosylation and Expression Stoichiometry with PD-1 and PD-L2 in Human Melanoma.
Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, Liebler DC
(2017) Mol Cell Proteomics 16: 1705-1717
MeSH Terms: Acetylglucosamine, Adult, Aged, B7-H1 Antigen, Biopsy, Cohort Studies, Female, Glycosylation, Humans, Male, Mannose, Mass Spectrometry, Melanoma, Middle Aged, Polysaccharides, Programmed Cell Death 1 Ligand 2 Protein, Programmed Cell Death 1 Receptor, Protein Processing, Post-Translational, Skin Neoplasms, T-Lymphocytes
Show Abstract · Added March 14, 2018
Quantitative assessment of key proteins that control the tumor-immune interface is one of the most formidable analytical challenges in immunotherapeutics. We developed a targeted MS platform to quantify programmed cell death-1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2) at fmol/microgram protein levels in formalin fixed, paraffin-embedded sections from 22 human melanomas. PD-L1 abundance ranged 50-fold, from ∼0.03 to 1.5 fmol/microgram protein and the parallel reaction monitoring (PRM) data were largely concordant with total PD-L1-positive cell content, as analyzed by immunohistochemistry (IHC) with the E1L3N antibody. PD-1 was measured at levels up to 20-fold lower than PD-L1, but the abundances were not significantly correlated (r = 0.062, = 0.264). PD-1 abundance was weakly correlated (r = 0.3057, = 0.009) with the fraction of lymphocytes and histiocytes in sections. PD-L2 was measured from 0.03 to 1.90 fmol/microgram protein and the ratio of PD-L2 to PD-L1 abundance ranged from 0.03 to 2.58. In 10 samples, PD-L2 was present at more than half the level of PD-L1, which suggests that PD-L2, a higher affinity PD-1 ligand, is sufficiently abundant to contribute to T-cell downregulation. We also identified five branched mannose and N-acetylglucosamine glycans at PD-L1 position N192 in all 22 samples. Extent of PD-L1 glycan modification varied by ∼10-fold and the melanoma with the highest PD-L1 protein abundance and most abundant glycan modification yielded a very low PD-L1 IHC estimate, thus suggesting that N-glycosylation may affect IHC measurement and PD-L1 function. Additional PRM analyses quantified immune checkpoint/co-regulator proteins LAG3, IDO1, TIM-3, VISTA, and CD40, which all displayed distinct expression independent of PD-1, PD-L1, and PD-L2. Targeted MS can provide a next-generation analysis platform to advance cancer immuno-therapeutic research and diagnostics.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Reactive Oxygen Species Shielding Hydrogel for the Delivery of Adherent and Nonadherent Therapeutic Cell Types.
Dollinger BR, Gupta MK, Martin JR, Duvall CL
(2017) Tissue Eng Part A 23: 1120-1131
MeSH Terms: Animals, Cell Adhesion, Cell Count, Cell Death, Cytoprotection, Humans, Hydrogels, Hydrogen Peroxide, Mesenchymal Stem Cell Transplantation, Mesenchymal Stem Cells, Mice, Polymers, Reactive Oxygen Species, Rheology
Show Abstract · Added March 14, 2018
Cell therapies suffer from poor survival post-transplant due to placement into hostile implant sites characterized by host immune response and innate production of high levels of reactive oxygen species (ROS). We hypothesized that cellular encapsulation within an injectable, antioxidant hydrogel would improve viability of cells exposed to high oxidative stress. To test this hypothesis, we applied a dual thermo- and ROS-responsive hydrogel comprising the ABC triblock polymer poly[(propylene sulfide)-block-(N,N-dimethyl acrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM, PDN). The PPS chemistry reacts irreversibly with ROS such as hydrogen peroxide (HO), imparting inherent antioxidant properties to the system. Here, PDN hydrogels were successfully integrated with type 1 collagen to form ROS-protective, composite hydrogels amenable to spreading and growth of adherent cell types such as mesenchymal stem cells (MSCs). It was also shown that, using a control hydrogel substituting nonreactive polycaprolactone in place of PPS, the ROS-reactive PPS chemistry is directly responsible for PDN hydrogel cytoprotection of both MSCs and insulin-producing β-cell pseudo-islets against HO toxicity. In sum, these results establish the potential of cytoprotective, thermogelling PDN biomaterials for injectable delivery of cell therapies.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Myocarditis with Immune Checkpoint Blockade.
Moslehi JJ, Johnson DB, Sosman JA
(2017) N Engl J Med 376: 292
MeSH Terms: B7-H1 Antigen, Humans, Myocarditis, Programmed Cell Death 1 Receptor
Added March 26, 2017
0 Communities
1 Members
0 Resources
4 MeSH Terms