Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 58

Publication Record

Connections

The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage.
Wani TH, Chakrabarty A, Shibata N, Yamazaki H, Guengerich FP, Chowdhury G
(2017) Chem Res Toxicol 30: 1622-1628
MeSH Terms: Catalase, DNA Cleavage, DNA Damage, Free Radical Scavengers, HEK293 Cells, Hep G2 Cells, Human Umbilical Vein Endothelial Cells, Humans, Microscopy, Fluorescence, Plasmids, Poly(ADP-ribose) Polymerases, Reactive Oxygen Species, Teratogens, Thalidomide
Show Abstract · Added March 14, 2018
Thalidomide [α-(N-phthalimido)glutarimide] (1) is a sedative and antiemetic drug originally introduced into the clinic in the 1950s for the treatment of morning sickness. Although marketed as entirely safe, more than 10 000 babies were born with severe birth defects. Thalidomide was banned and subsequently approved for the treatment of multiple myeloma and complications associated with leprosy. Although known for more than 5 decades, the mechanism of teratogenicity remains to be conclusively understood. Various theories have been proposed in the literature including DNA damage and ROS and inhibition of angiogenesis and cereblon. All of the theories have their merits and limitations. Although the recently proposed cereblon theory has gained wide acceptance, it fails to explain the metabolism and low-dose requirement reported by a number of groups. Recently, we have provided convincing structural evidence in support of the presence of arene oxide and the quinone-reactive intermediates. However, the ability of these reactive intermediates to impart toxicity/teratogenicity needs investigation. Herein we report that the oxidative metabolite of thalidomide, dihydroxythalidomide, is responsible for generating ROS and causing DNA damage. We show, using cell lines, the formation of comet (DNA damage) and ROS. Using DNA-cleavage assays, we also show that catalase, radical scavengers, and desferal are capable of inhibiting DNA damage. A mechanism of teratogenicity is proposed that not only explains the DNA-damaging property but also the metabolism, low concentration, and species-specificity requirements of thalidomide.
0 Communities
1 Members
0 Resources
14 MeSH Terms
The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni.
Johnson JG, Gaddy JA, DiRita VJ
(2016) mBio 7:
MeSH Terms: Animals, Bacterial Proteins, Campylobacter jejuni, Catalase, Chickens, Gastrointestinal Tract, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Heme, Humans, Hydrogen Peroxide, Iron, Mutation
Show Abstract · Added April 26, 2017
Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis. A previous mutant screen demonstrated that the heme uptake system (Chu) is required for full colonization of the chicken gastrointestinal tract. Subsequent work identified a PAS domain-containing regulator, termed HeuR, as being required for chicken colonization. Here we confirm that both the heme uptake system and HeuR are required for full chicken gastrointestinal tract colonization, with the heuR mutant being particularly affected during competition with wild-type C. jejuni Transcriptomic analysis identified the chu genes-and those encoding other iron uptake systems-as regulatory targets of HeuR. Purified HeuR bound the chuZA promoter region in electrophoretic mobility shift assays. Consistent with a role for HeuR in chu expression, heuR mutants were unable to efficiently use heme as a source of iron under iron-limiting conditions, and mutants exhibited decreased levels of cell-associated iron by mass spectrometry. Finally, we demonstrate that an heuR mutant of C. jejuni is resistant to hydrogen peroxide and that this resistance correlates to elevated levels of catalase activity. These results indicate that HeuR directly and positively regulates iron acquisition from heme and negatively impacts catalase activity by an as yet unidentified mechanism in C. jejuni IMPORTANCE: Annually, Campylobacter jejuni causes millions of gastrointestinal infections in the United States, due primarily to its ability to reside within the gastrointestinal tracts of poultry, where it can be released during processing and contaminate meat. In the developing world, humans are often infected by consuming contaminated water or by direct contact with livestock. Following consumption of contaminated food or water, humans develop disease that is characterized by mild to severe diarrhea. There is a need to understand both colonization of chickens, to make food safer, and colonization of humans, to better understand disease. Here we demonstrate that to efficiently colonize a host, C. jejuni requires iron from heme, which is regulated by the protein HeuR. Understanding how HeuR functions, we can develop ways to inhibit its function and reduce iron acquisition during colonization, potentially reducing C. jejuni in the avian host, which would make food safer, or limiting human colonization.
Copyright © 2016 Johnson et al.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.
Gilliam LA, Lark DS, Reese LR, Torres MJ, Ryan TE, Lin CT, Cathey BL, Neufer PD
(2016) Am J Physiol Endocrinol Metab 311: E293-301
MeSH Terms: Animals, Antineoplastic Agents, Breast Neoplasms, Catalase, Disease Models, Animal, Doxorubicin, Electron Transport Complex I, Electron Transport Complex II, Female, Hydrogen Peroxide, Mice, Mice, Transgenic, Mitochondria, Muscle, Muscle Contraction, Muscle, Skeletal, Oxidation-Reduction, Proteins
Show Abstract · Added October 17, 2016
The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.
Mashhadi Z, Boeglin WE, Brash AR
(2014) Biochimie 106: 180-3
MeSH Terms: Amino Acid Sequence, Biocatalysis, Catalase, Catalytic Domain, Crystallography, X-Ray, Heme, Humans, Hydrogen Bonding, Hydrogen Peroxide, Models, Molecular, Molecular Structure, Mutant Proteins, Mutation, Missense, Peroxides, Protein Structure, Tertiary, Sequence Homology, Amino Acid, Threonine, Valine
Show Abstract · Added January 21, 2015
True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases.
Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity.
Brash AR, Niraula NP, Boeglin WE, Mashhadi Z
(2014) J Biol Chem 289: 13101-11
MeSH Terms: Bacterial Proteins, Catalase, Nostoc, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Prostaglandin-Endoperoxide Synthases
Show Abstract · Added January 21, 2015
In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Dynamic dosing assay relating real-time respiration responses of Staphylococcus aureus biofilms to changing microchemical conditions.
Deng J, Dhummakupt A, Samson PC, Wikswo JP, Shor LM
(2013) Anal Chem 85: 5411-9
MeSH Terms: Anti-Bacterial Agents, Biofilms, Biosensing Techniques, Catalase, Computer Simulation, Dose-Response Relationship, Drug, Fluorescence, Hydrogen Peroxide, Microbial Sensitivity Tests, Microchemistry, Microfluidic Analytical Techniques, Oxygen, Respiration, Sodium Nitrite, Staphylococcal Infections, Staphylococcus aureus
Show Abstract · Added March 7, 2014
Bacterial biofilms are a metabolically heterogeneous community of bacteria distributed in an extracellular matrix comprised primarily of hydrated polysaccharides. Effective inhibitory concentrations measured under planktonic conditions are not applicable to biofilms, and inhibition concentrations measured for biofilms vary widely. Here, we introduce a novel microfluidic approach for screening respiration inhibition of bacteria in a biofilm array morphology. The device geometry and operating conditions allow antimicrobial concentration and flux to vary systematically and predictably with space and time. One experiment can screen biofilm respiratory responses to many different antimicrobial concentrations and dosing rates in parallel. To validate the assay, onset of respiration inhibition following NaN₃ exposure is determined optically using an O₂-sensing thin film. Onset of respiration inhibition obeys a clear and reproducible pattern based on time for diffusive transport of the respiration inhibitor to each biofilm in the array. This approach can be used for high-throughput screening of antimicrobial effectiveness as a function of microbial characteristics, antimicrobial properties, or antimicrobial dosing rates. The approach may also be useful in better understanding acquired antimicrobial resistance or for screening antimicrobial combinations.
1 Communities
2 Members
0 Resources
16 MeSH Terms
Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension.
Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL
(2013) Antioxid Redox Signal 18: 1727-38
MeSH Terms: Animals, Catalase, Disease Models, Animal, Dose-Response Relationship, Drug, Hypertension, Pulmonary, Hypoxia, NADPH Oxidases, Nitric Oxide, Nitric Oxide Synthase Type III, Polyethylene Glycols, Pulmonary Artery, Reactive Oxygen Species, S-Nitroso-N-Acetylpenicillamine, Superoxide Dismutase, Swine
Show Abstract · Added May 20, 2014
AIMS - There are no effective treatments for chronic pulmonary hypertension in infants with cardiopulmonary disorders associated with hypoxia, such as those with chronic lung disease. These patients often have poor or inconsistent pulmonary dilator responses to inhaled nitric oxide (iNO) therapy for unknown reasons. One possible explanation for poor responsiveness to iNO is reduced NO bioavailability caused by interactions between reactive oxygen species (ROS) and NO. Our major aim was to determine if strategies to reduce ROS improve dilator responses to the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), in resistance pulmonary arteries (PRAs) from a newborn piglet model of chronic pulmonary hypertension.
RESULTS - The dilation to SNAP was significantly impaired in PRAs from piglets with chronic hypoxia-induced pulmonary hypertension. ROS scavengers, including cell-permeable and impermeable agents to degrade hydrogen peroxide (H(2)O(2)), improved dilation to SNAP in PRAs from chronically hypoxic piglets. Treatment with agents to inhibit nitric oxide synthase and NADPH oxidase, potential enzymatic sources of ROS, also improved dilation to SNAP in PRAs from hypoxic piglets.
INNOVATION - Our studies are the first to utilize a newborn model of chronic pulmonary hypertension to evaluate the impact of a number of potential therapeutic strategies for ROS removal on responses to exogenous NO in the vessels most relevant to the regulation of pulmonary vascular resistance (PRA).
CONCLUSIONS - Strategies aimed at reducing ROS merit further evaluation and consideration as therapeutic approaches to improve responses to iNO in infants with chronic pulmonary hypertension.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet.
Kang L, Lustig ME, Bonner JS, Lee-Young RS, Mayes WH, James FD, Lin CT, Perry CG, Anderson EJ, Neufer PD, Wasserman DH
(2012) J Appl Physiol (1985) 113: 1173-83
MeSH Terms: Action Potentials, Animal Feed, Animals, Antioxidants, Biological Transport, Catalase, Diet, High-Fat, Glucose, Glutathione Disulfide, Hydrogen Peroxide, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mitochondria, Muscle, Skeletal, Nitric Oxide, Physical Conditioning, Animal, Reactive Nitrogen Species, Reactive Oxygen Species, Superoxide Dismutase, Tyrosine
Show Abstract · Added March 18, 2013
The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2(Tg)), mitochondria-targeted catalase (mcat(Tg)), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H(2)O(2) emitting potential (JH(2)O(2)) in muscle fibers. sod2(Tg) did not decrease JH(2)O(2) in chow-fed mice, but decreased JH(2)O(2) in HF-fed mice. mcat(Tg) and mtAO decreased JH(2)O(2) in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2(Tg) in chow-fed mice, but was increased in HF-fed sod2(Tg) and both chow- and HF-fed mcat(Tg) and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2(Tg), mcat(Tg), and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[(14)C]-deoxyglucose during exercise. In chow-fed mice, sod2(Tg), mcat(Tg), and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2(Tg) and mcat(Tg) mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state.
2 Communities
3 Members
0 Resources
21 MeSH Terms
Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase.
Boeglin WE, Brash AR
(2012) J Biol Chem 287: 24139-47
MeSH Terms: Catalase, Chromatography, High Pressure Liquid, Cytochrome P-450 Enzyme System, Gas Chromatography-Mass Spectrometry, Hemeproteins, Hydroxylation, Intramolecular Oxidoreductases, Iodobenzenes, Linoleic Acids, Magnetic Resonance Spectroscopy
Show Abstract · Added January 21, 2015
The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.
Bandara DM, Sono M, Bruce GS, Brash AR, Dawson JH
(2011) J Inorg Biochem 105: 1786-94
MeSH Terms: Amino Acid Substitution, Animals, Anthozoa, Bacterial Proteins, Carbon Monoxide, Catalase, Catalytic Domain, Cattle, Circular Dichroism, Coordination Complexes, Ferric Compounds, Ferrous Compounds, Humans, Hydrogen Bonding, Iron, Lipoxygenase, Liver, Mycobacterium avium subsp. paratuberculosis, Myoglobin, Oxidation-Reduction, Peroxidases
Show Abstract · Added December 10, 2013
Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (<20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.
Copyright © 2011 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms