Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 89

Publication Record

Connections

Structural and Functional Features of the Reovirus σ1 Tail.
Dietrich MH, Ogden KM, Long JM, Ebenhoch R, Thor A, Dermody TS, Stehle T
(2018) J Virol 92:
MeSH Terms: Amino Acid Sequence, Capsid Proteins, Cells, Cultured, Crystallography, X-Ray, Protein Binding, Protein Conformation, Receptors, Virus, Reoviridae, Reoviridae Infections, Sequence Homology, Virus Attachment, Virus Internalization, Virus Replication
Show Abstract · Added April 3, 2019
Mammalian orthoreovirus attachment to target cells is mediated by the outer capsid protein σ1, which projects from the virion surface. The σ1 protein is a homotrimer consisting of a filamentous tail, which is partly inserted into the virion; a body domain constructed from β-spiral repeats; and a globular head with receptor-binding properties. The σ1 tail is predicted to form an α-helical coiled coil. Although σ1 undergoes a conformational change during cell entry, the nature of this change and its contributions to viral replication are unknown. Electron micrographs of σ1 molecules released from virions identified three regions of flexibility, including one at the midpoint of the molecule, that may be involved in its structural rearrangement. To enable a detailed understanding of essential σ1 tail organization and properties, we determined high-resolution structures of the reovirus type 1 Lang (T1L) and type 3 Dearing (T3D) σ1 tail domains. Both molecules feature extended α-helical coiled coils, with T1L σ1 harboring central chloride ions. Each molecule displays a discontinuity (stutter) within the coiled coil and an unexpectedly seamless transition to the body domain. The transition region features conserved interdomain interactions and appears rigid rather than highly flexible. Functional analyses of reoviruses containing engineered σ1 mutations suggest that conserved residues predicted to stabilize the coiled-coil-to-body junction are essential for σ1 folding and encapsidation, whereas central chloride ion coordination and the stutter are dispensable for efficient replication. Together, these findings enable modeling of full-length reovirus σ1 and provide insight into the stabilization of a multidomain virus attachment protein. While it is established that different conformational states of attachment proteins of enveloped viruses mediate receptor binding and membrane fusion, less is understood about how such proteins mediate attachment and entry of nonenveloped viruses. The filamentous reovirus attachment protein σ1 binds cellular receptors; contains regions of predicted flexibility, including one at the fiber midpoint; and undergoes a conformational change during cell entry. Neither the nature of the structural change nor its contribution to viral infection is understood. We determined crystal structures of large σ1 fragments for two different reovirus serotypes. We observed an unexpectedly tight transition between two domains spanning the fiber midpoint, which allows for little flexibility. Studies of reoviruses with engineered changes near the σ1 midpoint suggest that the stabilization of this region is critical for function. Together with a previously determined structure, we now have a complete model of the full-length, elongated reovirus σ1 attachment protein.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6.
Cho MJ, Ellebrecht CT, Hammers CM, Mukherjee EM, Sapparapu G, Boudreaux CE, McDonald SM, Crowe JE, Payne AS
(2016) J Immunol 197: 1065-73
MeSH Terms: Antigens, Viral, Autoantigens, Capsid Proteins, Cross Reactions, Desmoglein 3, Dual-Specificity Phosphatases, Enzyme-Linked Immunosorbent Assay, High-Throughput Screening Assays, Humans, Microscopy, Fluorescence, Pemphigus, Polymerase Chain Reaction, Rotavirus Infections
Show Abstract · Added April 13, 2017
Shared VH1-46 gene usage has been described in B cells reacting to desmoglein 3 (Dsg3) in the autoimmune disease pemphigus vulgaris (PV), as well as B cells responding to rotavirus capsid protein VP6. In both diseases, VH1-46 B cells bearing few to no somatic mutations can recognize the disease Ag. This intriguing connection between an autoimmune response to self-antigen and an immune response to foreign Ag prompted us to investigate whether VH1-46 B cells may be predisposed to Dsg3-VP6 cross-reactivity. Focused testing of VH1-46 mAbs previously isolated from PV and rotavirus-exposed individuals indicates that cross-reactivity is rare, found in only one of seven VH1-46 IgG clonotypes. High-throughput screening of IgG B cell repertoires from two PV patients identified no additional cross-reactive clonotypes. Screening of IgM B cell repertoires from one non-PV and three PV patients identified specific cross-reactive Abs in one PV patient, but notably all six cross-reactive clonotypes used VH1-46. Site-directed mutagenesis studies indicate that amino acid residues predisposing VH1-46 Abs to Dsg3 reactivity reside in CDR2. However, somatic mutations only rarely promote Dsg3-VP6 cross-reactivity; most mutations abolish VP6 and/or Dsg3 reactivity. Nevertheless, functional testing identified two cross-reactive VH1-46 Abs that both disrupt keratinocyte adhesion and inhibit rotavirus replication, indicating the potential for VH1-46 Abs to have both pathologic autoimmune and protective immune functions. Taken together, these studies suggest that certain VH1-46 B cell populations may be predisposed to Dsg3-VP6 cross-reactivity, but multiple mechanisms prevent the onset of autoimmunity after rotavirus exposure.
Copyright © 2016 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
13 MeSH Terms
HIV-1 Resistance to the Capsid-Targeting Inhibitor PF74 Results in Altered Dependence on Host Factors Required for Virus Nuclear Entry.
Zhou J, Price AJ, Halambage UD, James LC, Aiken C
(2015) J Virol 89: 9068-79
MeSH Terms: Amino Acid Substitution, Anti-HIV Agents, Binding Sites, CD4-Positive T-Lymphocytes, Capsid, Capsid Proteins, Cell Line, Drug Resistance, Viral, HIV Infections, HIV-1, Host-Pathogen Interactions, Humans, Indoles, Macrophages, Molecular Chaperones, Nuclear Pore Complex Proteins, Phenylalanine, Protein Binding, Protein Conformation, RNA Interference, RNA, Small Interfering, Virus Internalization, Virus Replication, beta Karyopherins, mRNA Cleavage and Polyadenylation Factors
Show Abstract · Added February 4, 2016
UNLABELLED - During HIV-1 infection of cells, the viral capsid plays critical roles in reverse transcription and nuclear entry of the virus. The capsid-targeting small molecule PF74 inhibits HIV-1 at early stages of infection. HIV-1 resistance to PF74 is complex, requiring multiple amino acid substitutions in the viral CA protein. Here we report the identification and analysis of a novel PF74-resistant mutant encoding amino acid changes in both domains of CA, three of which are near the pocket where PF74 binds. Interestingly, the mutant virus retained partial PF74 binding, and its replication was stimulated by the compound. The mutant capsid structure was not significantly perturbed by binding of PF74; rather, the mutations inhibited capsid interactions with CPSF6 and Nup153 and altered HIV-1 dependence on these host factors and on TNPO3. Moreover, the replication of the mutant virus was markedly impaired in activated primary CD4(+) T cells and macrophages. Our results suggest that HIV-1 escapes a capsid-targeting small molecule inhibitor by altering the virus's dependence on host factors normally required for entry into the nucleus. They further imply that clinical resistance to inhibitors targeting the PF74 binding pocket is likely to be strongly limited by functional constraints on HIV-1 evolution.
IMPORTANCE - The HIV-1 capsid plays critical roles in early steps of infection and is an attractive target for therapy. Here we show that selection for resistance to a capsid-targeting small molecule inhibitor can result in viral dependence on the compound. The mutant virus was debilitated in primary T cells and macrophages--cellular targets of infection in vivo. The mutations also altered the virus's dependence on cellular factors that are normally required for HIV-1 entry into the nucleus. This work provides new information regarding mechanisms of HIV-1 resistance that should be useful in efforts to develop clinically useful drugs targeting the HIV-1 capsid.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.
Halambage UD, Wong JP, Melancon BJ, Lindsley CW, Aiken C
(2015) Antimicrob Agents Chemother 59: 5190-5
MeSH Terms: Anti-HIV Agents, Capsid, Capsid Proteins, Cell Line, HIV-1, Humans, Virus Replication
Show Abstract · Added February 4, 2016
Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist.
Ogden KM, Hu L, Jha BK, Sankaran B, Weiss SR, Silverman RH, Patton JT, Prasad BV
(2015) J Virol 89: 6633-45
MeSH Terms: Adenine Nucleotides, Capsid Proteins, Catalytic Domain, Crystallography, X-Ray, Exoribonucleases, Oligoribonucleotides, Protein Binding, Protein Conformation, Rotavirus
Show Abstract · Added April 26, 2017
UNLABELLED - Synthesis of 2'-5'-oligoadenylates (2-5A) by oligoadenylate synthetase (OAS) is an important innate cellular response that limits viral replication by activating the latent cellular RNase, RNase L, to degrade single-stranded RNA. Some rotaviruses and coronaviruses antagonize the OAS/RNase L pathway through the activity of an encoded 2H phosphoesterase domain that cleaves 2-5A. These viral 2H phosphoesterases are phylogenetically related to the cellular A kinase anchoring protein 7 (AKAP7) and share a core structure and an active site that contains two well-defined HΦ(S/T)Φ (where Φ is a hydrophobic residue) motifs, but their mechanism of substrate binding is unknown. Here, we report the structures of a viral 2H phosphoesterase, the C-terminal domain (CTD) of the group A rotavirus (RVA) VP3 protein, both alone and in complex with 2-5A. The domain forms a compact fold, with a concave β-sheet that contains the catalytic cleft, but it lacks two α-helical regions and two β-strands observed in AKAP7 and other 2H phosphoesterases. The cocrystal structure shows significant conformational changes in the R loop upon ligand binding. Bioinformatics and biochemical analyses reveal that conserved residues and residues required for catalytic activity and substrate binding comprise the catalytic motifs and a region on one side of the binding cleft. We demonstrate that the VP3 CTD of group B rotavirus, but not that of group G, cleaves 2-5A. These findings suggest that the VP3 CTD is a streamlined version of a 2H phosphoesterase with a ligand-binding mechanism that is shared among 2H phosphodiesterases that cleave 2-5A.
IMPORTANCE - The C-terminal domain (CTD) of rotavirus VP3 is a 2H phosphoesterase that cleaves 2'-5'-oligoadenylates (2-5A), potent activators of an important innate cellular antiviral pathway. 2H phosphoesterase superfamily proteins contain two conserved catalytic motifs and a proposed core structure. Here, we present structures of a viral 2H phosphoesterase, the rotavirus VP3 CTD, alone and in complex with its substrate, 2-5A. The domain lacks two α-helical regions and β-strands present in other 2H phosphoesterases. A loop of the protein undergoes significant structural changes upon substrate binding. Together with our bioinformatics and biochemical findings, the crystal structures suggest that the RVA VP3 CTD domain is a streamlined version of a cellular enzyme that shares a ligand-binding mechanism with other 2H phosphodiesterases that cleave 2-5A but differs from those of 2H phosphodiesterases that cleave other substrates. These findings may aid in the future design of antivirals targeting viral phosphodiesterases with cleavage specificity for 2-5A.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Structure of Serotype 1 Reovirus Attachment Protein σ1 in Complex with Junctional Adhesion Molecule A Reveals a Conserved Serotype-Independent Binding Epitope.
Stettner E, Dietrich MH, Reiss K, Dermody TS, Stehle T
(2015) J Virol 89: 6136-40
MeSH Terms: Amino Acid Sequence, Binding Sites, Capsid Proteins, Crystallography, X-Ray, Junctional Adhesion Molecule A, Models, Molecular, Molecular Sequence Data, Protein Binding, Protein Conformation, Receptors, Virus, Sequence Homology
Show Abstract · Added February 4, 2016
Mammalian orthoreoviruses use glycans and junctional adhesion molecule A (JAM-A) as attachment receptors. We determined the structure of serotype 1 reovirus attachment protein σ1 alone and in complex with JAM-A. Comparison with the structure of serotype 3 reovirus σ1 bound to JAM-A reveals that both σ1 proteins engage JAM-A with similar affinities and via conserved binding epitopes. Thus, σ1-JAM-A interactions are unlikely to explain the differences in pathogenesis displayed by these reovirus serotypes.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Diminished reovirus capsid stability alters disease pathogenesis and littermate transmission.
Doyle JD, Stencel-Baerenwald JE, Copeland CA, Rhoads JP, Brown JJ, Boyd KL, Atkinson JB, Dermody TS
(2015) PLoS Pathog 11: e1004693
MeSH Terms: Animals, Capsid, Capsid Proteins, Mice, Mutation, Orthoreovirus, Mammalian, Virion, Virus Assembly
Show Abstract · Added February 4, 2016
Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Silencing the alarms: Innate immune antagonism by rotavirus NSP1 and VP3.
Morelli M, Ogden KM, Patton JT
(2015) Virology 479-480: 75-84
MeSH Terms: Capsid Proteins, Host-Pathogen Interactions, Immune Evasion, Immunity, Innate, Rotavirus, Viral Nonstructural Proteins
Show Abstract · Added April 26, 2017
The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFNs) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)/RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other rotavirus species evade host innate immune responses.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
6 MeSH Terms
The Nogo receptor NgR1 mediates infection by mammalian reovirus.
Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS
(2014) Cell Host Microbe 15: 681-91
MeSH Terms: Animals, CHO Cells, Capsid Proteins, Cell Adhesion Molecules, Cell Membrane, Cricetulus, GPI-Linked Proteins, Host-Pathogen Interactions, Humans, Mice, Mutant Strains, Myelin Proteins, Neuraminidase, Neurons, Nogo Receptor 1, Receptors, Cell Surface, Reoviridae, Reoviridae Infections, Virion
Show Abstract · Added January 21, 2015
Neurotropic viruses, including mammalian reovirus, must disseminate from an initial site of replication to the central nervous system (CNS), often binding multiple receptors to facilitate systemic spread. Reovirus engages junctional adhesion molecule A (JAM-A) to disseminate hematogenously. However, JAM-A is dispensable for reovirus replication in the CNS. We demonstrate that reovirus binds Nogo receptor NgR1, a leucine-rich repeat protein expressed in the CNS, to infect neurons. Expression of NgR1 confers reovirus binding and infection of nonsusceptible cells. Incubating reovirus virions with soluble NgR1 neutralizes infectivity. Blocking NgR1 on transfected cells or primary cortical neurons abrogates reovirus infection. Concordantly, reovirus infection is ablated in primary cortical neurons derived from NgR1 null mice. Reovirus virions bind to soluble JAM-A and NgR1, while infectious disassembly intermediates (ISVPs) bind only to JAM-A. These results suggest that reovirus uses different capsid components to bind distinct cell-surface molecules, engaging independent receptors to facilitate spread and tropism.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3.
Ogden KM, Snyder MJ, Dennis AF, Patton JT
(2014) J Virol 88: 9072-85
MeSH Terms: Amino Acid Sequence, Animals, Capsid Proteins, Catalytic Domain, Cell Line, Immunity, Innate, Molecular Sequence Data, Orbivirus, Phylogeny, Protein Structure, Tertiary, Rotavirus, Rotavirus Infections, Sequence Alignment, Sf9 Cells, Spodoptera, Transcription, Genetic, Virion
Show Abstract · Added April 26, 2017
UNLABELLED - Rotaviruses and orbiviruses are nonturreted Reoviridae members. The rotavirus VP3 protein is a multifunctional capping enzyme and antagonist of the interferon-induced cellular oligoadenylate synthetase-RNase L pathway. Despite mediating important processes, VP3 is the sole protein component of the rotavirus virion whose structure remains unknown. In the current study, we used sequence alignment and homology modeling to identify features common to nonturreted Reoviridae capping enzymes and to predict the domain organization, structure, and active sites of rotavirus VP3. Our results suggest that orbivirus and rotavirus capping enzymes share a domain arrangement similar to that of the bluetongue virus capping enzyme. Sequence alignments revealed conserved motifs and suggested that rotavirus and orbivirus capping enzymes contain a variable N-terminal domain, a central guanine-N7-methyltransferase domain that contains an additional inserted domain, and a C-terminal guanylyltransferase and RNA 5'-triphosphatase domain. Sequence conservation and homology modeling suggested that the insertion in the guanine-N7-methyltransferase domain is a ribose-2'-O-methyltransferase domain for most rotavirus species. Our analyses permitted putative identification of rotavirus VP3 active-site residues, including those that form the ribose-2'-O-methyltransferase catalytic tetrad, interact with S-adenosyl-l-methionine, and contribute to autoguanylation. Previous reports have indicated that group A rotavirus VP3 contains a C-terminal 2H-phosphodiesterase domain that can cleave 2'-5' oligoadenylates, thereby preventing RNase L activation. Our results suggest that a C-terminal phosphodiesterase domain is present in the capping enzymes from two additional rotavirus species. Together, these findings provide insight into a poorly understood area of rotavirus biology and are a springboard for future biochemical and structural studies of VP3.
IMPORTANCE - Rotaviruses are an important cause of severe diarrheal disease. The rotavirus VP3 protein caps viral mRNAs and helps combat cellular innate antiviral defenses, but little is known about its structure or enzymatic mechanisms. In this study, we used sequence- and structure-based alignments with related proteins to predict the structure of VP3 and identify enzymatic domains and active sites therein. This work provides insight into the mechanisms of rotavirus transcription and evasion of host innate immune defenses. An improved understanding of these processes may aid our ability to develop rotavirus vaccines and therapeutics.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms