Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 169

Publication Record

Connections

Activated CaMKII Binds to the mGlu Metabotropic Glutamate Receptor and Modulates Calcium Mobilization.
Marks CR, Shonesy BC, Wang X, Stephenson JR, Niswender CM, Colbran RJ
(2018) Mol Pharmacol 94: 1352-1362
MeSH Terms: Animals, Calcium, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calmodulin, Cell Line, Cell Membrane, Female, HEK293 Cells, Humans, Immunoprecipitation, Male, Mice, Mice, Knockout, Protein Binding, Receptor, Metabotropic Glutamate 5, Signal Transduction
Show Abstract · Added November 8, 2018
Ca/calmodulin-dependent protein kinase II (CaMKII) and metabotropic glutamate receptor 5 (mGlu) are critical signaling molecules in synaptic plasticity and learning/memory. Here, we demonstrate that mGlu is present in CaMKII complexes isolated from mouse forebrain. Further in vitro characterization showed that the membrane-proximal region of the C-terminal domain (CTD) of mGlu directly interacts with purified Thr286-autophosphorylated (activated) CaMKII However, the binding of CaMKII to this CTD fragment is reduced by the addition of excess Ca/calmodulin or by additional CaMKII autophosphorylation at non-Thr286 sites. Furthermore, in vitro binding of CaMKII is dependent on a tribasic residue motif Lys-Arg-Arg (KRR) at residues 866-868 of the mGlu-CTD, and mutation of this motif decreases the coimmunoprecipitation of CaMKII with full-length mGlu expressed in heterologous cells by about 50%. The KRR motif is required for two novel functional effects of coexpressing constitutively active CaMKII with mGlu in heterologous cells. First, cell-surface biotinylation studies showed that CaMKII increases the surface expression of mGlu Second, using Ca fluorimetry and single-cell Ca imaging, we found that CaMKII reduces the initial peak of mGlu-mediated Ca mobilization by about 25% while doubling the relative duration of the Ca signal. These findings provide new insights into the physical and functional coupling of these key regulators of postsynaptic signaling.
Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
1 Communities
1 Members
0 Resources
16 MeSH Terms
A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel.
Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ
(2018) Structure 26: 683-694.e3
MeSH Terms: Binding Sites, Calcium, Calmodulin, Crystallography, X-Ray, Gene Expression Regulation, Humans, Kinetics, Models, Molecular, Mutation, NAV1.5 Voltage-Gated Sodium Channel, Protein Binding
Show Abstract · Added March 26, 2019
The function of the human cardiac sodium channel (Na1.5) is modulated by the Ca sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca-dependent manner to two sites in the intracellular loop that is critical for inactivation of Na1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length Na1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
MeSH Terms
A novel mechanism for Ca/calmodulin-dependent protein kinase II targeting to L-type Ca channels that initiates long-range signaling to the nucleus.
Wang X, Marks CR, Perfitt TL, Nakagawa T, Lee A, Jacobson DA, Colbran RJ
(2017) J Biol Chem 292: 17324-17336
MeSH Terms: Animals, Calcium Channels, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cell Nucleus, Female, Hippocampus, Learning, Memory, Neurons, Protein Domains, Rats, Rats, Sprague-Dawley, Signal Transduction
Show Abstract · Added November 13, 2017
Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca-sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca/calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of Ca1 LTCC α1 subunits that is not conserved in Ca2 or Ca3 voltage-gated Ca channel subunits. Mutations in the Ca1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Calmodulin Mutants Linked to Catecholaminergic Polymorphic Ventricular Tachycardia Fail to Inhibit Human RyR2 Channels.
Walweel K, Gomez-Hurtado N, Oo YW, Beard NA, Dos Remedios C, Johnson CN, Chazin WJ, van Helden DF, Knollmann BC, Laver DR
(2017) J Am Coll Cardiol 70: 115-117
MeSH Terms: Calmodulin, Heart Ventricles, Humans, In Vitro Techniques, Mutation, Phosphorylation, Ryanodine Receptor Calcium Release Channel, Tachycardia, Ventricular
Added March 24, 2018
0 Communities
1 Members
0 Resources
8 MeSH Terms
β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions.
Zhu L, Almaça J, Dadi PK, Hong H, Sakamoto W, Rossi M, Lee RJ, Vierra NC, Lu H, Cui Y, McMillin SM, Perry NA, Gurevich VV, Lee A, Kuo B, Leapman RD, Matschinsky FM, Doliba NM, Urs NM, Caron MG, Jacobson DA, Caicedo A, Wess J
(2017) Nat Commun 8: 14295
MeSH Terms: Animals, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cell Line, Cell Line, Tumor, Diet, High-Fat, Gene Expression, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Islets of Langerhans, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Signal Transduction, beta-Arrestin 2
Show Abstract · Added November 13, 2017
β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.
0 Communities
2 Members
0 Resources
16 MeSH Terms
A Novel Human Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.
Stephenson JR, Wang X, Perfitt TL, Parrish WP, Shonesy BC, Marks CR, Mortlock DP, Nakagawa T, Sutcliffe JS, Colbran RJ
(2017) J Neurosci 37: 2216-2233
MeSH Terms: Animals, Autism Spectrum Disorder, Brain, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cells, Cultured, Cycloheximide, Dendrites, Disease Models, Animal, Embryo, Mammalian, Excitatory Postsynaptic Potentials, Exploratory Behavior, Female, Gene Expression Regulation, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mutation, Rats, Rats, Sprague-Dawley, Receptors, AMPA, Receptors, N-Methyl-D-Aspartate, Sialoglycoproteins, Synaptic Transmission
Show Abstract · Added February 2, 2017
Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.
Copyright © 2017 the authors 0270-6474/17/372217-18$15.00/0.
1 Communities
2 Members
1 Resources
25 MeSH Terms
CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.
Tavalin SJ, Colbran RJ
(2017) Mol Cell Neurosci 79: 45-52
MeSH Terms: Action Potentials, Calcium Signaling, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Chlorides, HEK293 Cells, Humans, Phosphorylation, Protein Binding, Protein Processing, Post-Translational, Receptors, N-Methyl-D-Aspartate
Show Abstract · Added April 26, 2017
Some forms of long-term synaptic plasticity require docking of Ca/calmodulin-dependent protein kinase II α (CaMKIIα) to residues 1290-1309 within the intracellular C-terminal tail of the N-methyl-d-aspartate (NMDA) receptor GluN2B subunit. The phosphorylation of Ser1303 within this region destabilizes CaMKII binding. Interestingly, Ser1303 is a substrate for CaMKII itself, as well as PKC and DAPK1, but these kinases have been reported to have contradictory effects on the activity of GluN2B-containing NMDA receptors. Here, we re-assessed the effect of CaMKII on NMDA receptor desensitization in heterologous cells, as measured by the ratio of steady-state to peak currents induced during 3s agonist applications. CaMKIIα co-expression or infusion of constitutively active CaMKII limits the extent of desensitization and preserves current amplitude with repeated stimulation of recombinant GluN1A/GluN2B when examined using low intracellular chloride (Cl) levels, characteristic of neurons beyond the first postnatal week. In contrast, CaMKIIα enhances the acute rate and extent of desensitization when intracellular Cl concentrations are high. The apparent dependence of CaMKIIα effects on NMDA receptor desensitization on Cl concentrations is consistent with the presence of a Ca-activated Cl conductance endogenous to HEK 293 cells, which was confirmed by photolysis of caged-Ca. However, Ca-activated Cl conductances are unaffected by CaMKIIα expression, indicating that CaMKII affects agonist-induced whole cell currents via modulation of the NMDA receptor. In support of this idea, CaMKIIα modulation of GluN2B-NMDA receptors is abrogated by the phospho-null mutation of Ser1303 in GluN2B to alanine and occluded by phospho-mimetic mutation of Ser1303 to aspartate regardless of intracellular Cl concentration. Thus, CaMKII-mediated phosphorylation of GluN2B-containing NMDA receptors reduces desensitization at physiological (low) intracellular Cl, perhaps serving as a feed-forward mechanism to sustain NMDA-mediated Ca entry and continued CaMKII activation during learning and memory.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks.
Gomez-Hurtado N, Boczek NJ, Kryshtal DO, Johnson CN, Sun J, Nitu FR, Cornea RL, Chazin WJ, Calvert ML, Tester DJ, Ackerman MJ, Knollmann BC
(2016) Circ Arrhythm Electrophysiol 9:
MeSH Terms: Action Potentials, Adult, Animals, Calmodulin, DNA Mutational Analysis, Electrocardiography, Exercise Test, Female, Genotype, Humans, Long QT Syndrome, Male, Mice, Phenotype, Ryanodine, Tachycardia, Ventricular
Show Abstract · Added April 18, 2017
BACKGROUND - Calmodulin (CaM) mutations are associated with severe forms of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). CaM mutations are found in 13% of genotype-negative long QT syndrome patients, but the prevalence of CaM mutations in genotype-negative CPVT patients is unknown. Here, we identify and characterize CaM mutations in 12 patients with genotype-negative but clinically diagnosed CPVT.
METHODS AND RESULTS - We performed mutational analysis of CALM1, CALM2, and CALM3 gene-coding regions, in vitro measurement of CaM-Ca(2+) (Ca)-binding affinity, ryanodine receptor 2-CaM binding, Ca handling, L-type Ca current, and action potential duration. We identified a novel CaM mutation-A103V-in CALM3 in 1 of 12 patients (8%), a female who experienced episodes of exertion-induced syncope since age 10, had normal QT interval, and displayed ventricular ectopy during stress testing consistent with CPVT. A103V modestly lowered CaM Ca-binding affinity (3-fold reduction versus WT-CaM), but did not alter CaM binding to ryanodine receptor 2. In permeabilized cardiomyocytes, A103V-CaM (100 nmol/L) promoted spontaneous Ca wave and spark activity, a cellular phenotype of ryanodine receptor 2 activation. Even a 1:3 mixture of A103V-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. Compared with long QT syndrome D96V-CaM, A103V-CaM had significantly less effects on L-type Ca current inactivation, did not alter action potential duration, and caused delayed afterdepolarizations and triggered beats in intact cardiomyocytes.
CONCLUSIONS - We discovered a novel CPVT mutation in the CALM3 gene that shares functional characteristics with established CPVT-associated mutations in CALM1. A small proportion of A103V-CaM is sufficient to evoke arrhythmogenic Ca disturbances via ryanodine receptor 2 dysregulation, which explains the autosomal dominant inheritance.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes.
Pipilas DC, Johnson CN, Webster G, Schlaepfer J, Fellmann F, Sekarski N, Wren LM, Ogorodnik KV, Chazin DM, Chazin WJ, Crotti L, Bhuiyan ZA, George AL
(2016) Heart Rhythm 13: 2012-9
MeSH Terms: Action Potentials, Calmodulin, Child, Preschool, Electrocardiography, Genetic Predisposition to Disease, Humans, Infant, Long QT Syndrome, Male, Mutation, Myocytes, Cardiac, Switzerland
Show Abstract · Added April 18, 2017
BACKGROUND - Calmodulin (CaM) mutations are associated with cardiac arrhythmia susceptibility including congenital long QT syndrome (LQTS).
OBJECTIVE - The purpose of this study was to determine the clinical, genetic, and functional features of 2 novel CaM mutations in children with life-threatening ventricular arrhythmias.
METHODS - The clinical and genetic features of 2 congenital arrhythmia cases associated with 2 novel CaM gene mutations were ascertained. Biochemical and functional investigations were conducted on the 2 mutations.
RESULTS - A novel de novo CALM2 mutation (D132H) was discovered by candidate gene screening in a male infant with prenatal bradycardia born to healthy parents. Postnatal course was complicated by profound bradycardia, prolonged corrected QT interval (651 ms), 2:1 atrioventricular block, and cardiogenic shock. He was resuscitated and was treated with a cardiac device. A second novel de novo mutation in CALM1 (D132V) was discovered by clinical exome sequencing in a 3-year-old boy who suffered a witnessed cardiac arrest secondary to ventricular fibrillation. Electrocardiographic recording after successful resuscitation revealed a prolonged corrected QT interval of 574 ms. The Ca(2+) affinity of CaM-D132H and CaM-D132V revealed extremely weak binding to the C-terminal domain, with significant structural perturbations noted for D132H. Voltage-clamp recordings of human induced pluripotent stem cell-derived cardiomyocytes transiently expressing wild-type or mutant CaM demonstrated that both mutations caused impaired Ca(2+)-dependent inactivation of voltage-gated Ca(2+) current. Neither mutant affected voltage-dependent inactivation.
CONCLUSION - Our findings implicate impaired Ca(2+)-dependent inactivation in human cardiomyocytes as the plausible mechanism for long QT syndrome associated with 2 novel CaM mutations. The data further expand the spectrum of genotype and phenotype associated with calmodulinopathy.
Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G.
Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ
(2016) Circ Cardiovasc Genet 9: 136-146
MeSH Terms: Amino Acid Sequence, Animals, Calmodulin, Demography, Female, Humans, Long QT Syndrome, Male, Mice, Inbred C57BL, Mutation, Missense, Prevalence, Young Adult
Show Abstract · Added April 18, 2017
BACKGROUND - Calmodulin (CaM) is encoded by 3 genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca(2+) and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants.
METHODS AND RESULTS - Thirty-eight genetically elusive LQTS cases underwent whole-exome sequencing to identify CaM variants. Nonsynonymous CaM variants were over-represented significantly in this heretofore LQTS cohort (13.2%) compared with exome aggregation consortium (0.04%; P<0.0001). When the clinical sequelae of these 5 CaM-positive cases were compared with the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 10 months, an average corrected QT interval of 676 ms, and a high prevalence of cardiac arrest. Functional characterization of 1 novel variant, E141G-CaM, revealed an 11-fold reduction in Ca(2+)-binding affinity and a functionally dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release.
CONCLUSIONS - Overall, 13% of our genetically elusive LQTS cohort harbored nonsynonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
12 MeSH Terms