Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 102

Publication Record

Connections

Interplay between ER Ca Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca Entry.
Nelson HA, Leech CA, Kopp RF, Roe MW
(2018) Int J Mol Sci 19:
MeSH Terms: 3T3 Cells, Animals, Calcium, Calcium Signaling, Fluorescence Resonance Energy Transfer, Green Fluorescent Proteins, Humans, Membrane Microdomains, Mice, Neoplasm Proteins, ORAI1 Protein, Protein Binding, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca-binding protein, with Ca-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.
0 Communities
1 Members
0 Resources
14 MeSH Terms
TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion.
Vierra NC, Dickerson MT, Jordan KL, Dadi PK, Katdare KA, Altman MK, Milian SC, Jacobson DA
(2018) Mol Metab 9: 84-97
MeSH Terms: Animals, Calcium Signaling, Cells, Cultured, Cytoplasm, Endoplasmic Reticulum, Glucagon, Humans, Male, Mice, Mice, Inbred C57BL, Potassium Channels, Tandem Pore Domain, Somatostatin, Somatostatin-Secreting Cells
Show Abstract · Added February 7, 2018
OBJECTIVE - Single-cell RNA sequencing studies have revealed that the type-2 diabetes associated two-pore domain K (K2P) channel TALK-1 is abundantly expressed in somatostatin-secreting δ-cells. However, a physiological role for TALK-1 in δ-cells remains unknown. We previously determined that in β-cells, K flux through endoplasmic reticulum (ER)-localized TALK-1 channels enhances ER Ca leak, modulating Ca handling and insulin secretion. As glucose amplification of islet somatostatin release relies on Ca-induced Ca release (CICR) from the δ-cell ER, we investigated whether TALK-1 modulates δ-cell Ca handling and somatostatin secretion.
METHODS - To define the functions of islet δ-cell TALK-1 channels, we generated control and TALK-1 channel-deficient (TALK-1 KO) mice expressing fluorescent reporters specifically in δ- and α-cells to facilitate cell type identification. Using immunofluorescence, patch clamp electrophysiology, Ca imaging, and hormone secretion assays, we assessed how TALK-1 channel activity impacts δ- and α-cell function.
RESULTS - TALK-1 channels are expressed in both mouse and human δ-cells, where they modulate glucose-stimulated changes in cytosolic Ca and somatostatin secretion. Measurement of cytosolic Ca levels in response to membrane potential depolarization revealed enhanced CICR in TALK-1 KO δ-cells that could be abolished by depleting ER Ca with sarco/endoplasmic reticulum Ca ATPase (SERCA) inhibitors. Consistent with elevated somatostatin inhibitory tone, we observed significantly reduced glucagon secretion and α-cell Ca oscillations in TALK-1 KO islets, and found that blockade of α-cell somatostatin signaling with a somatostatin receptor 2 (SSTR2) antagonist restored glucagon secretion in TALK-1 KO islets.
CONCLUSIONS - These data indicate that TALK-1 reduces δ-cell cytosolic Ca elevations and somatostatin release by limiting δ-cell CICR, modulating the intraislet paracrine signaling mechanisms that control glucagon secretion.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Molecular physiology and pathophysiology of stromal interaction molecules.
Nelson HA, Roe MW
(2018) Exp Biol Med (Maywood) 243: 451-472
MeSH Terms: Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Endoplasmic Reticulum, Humans, Mice, Neoplasm Proteins, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Ca release from the endoplasmic reticulum is an important component of Ca signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca from the endoplasmic reticulum is coupled to the activation of store-operated Ca entry into cells. Store-operated Ca entry provides Ca for replenishing depleted endoplasmic reticulum Ca stores and a Ca signal that regulates Ca-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca stores following G protein-coupled receptor activation with the induction of store-operated Ca entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca concentration within the endoplasmic reticulum lumen and activators of Ca release-activated Ca channels. Emerging evidence indicates that in addition to their role in Ca release-activated Ca channel gating and store-operated Ca entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion.
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, Nano R, Piemonti L, Rutter GA, Jacobson DA, Lavery GG, Hodson DJ
(2018) Diabetes 67: 278-290
MeSH Terms: 11-beta-Hydroxysteroid Dehydrogenase Type 1, Animals, Biomarkers, Calcium Channels, Calcium Signaling, Cell Differentiation, Corticosterone, Cortisone, Cyclic AMP, Glucocorticoids, Glucose, Humans, Hydrocortisone, Insulin, Insulin Secretion, Insulin-Secreting Cells, Kinetics, Mice, Inbred Strains, Mice, Knockout, Tissue Culture Techniques
Show Abstract · Added December 6, 2017
Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca channel function and Ca fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Multiple Mechanisms Drive Calcium Signal Dynamics around Laser-Induced Epithelial Wounds.
Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS
(2017) Biophys J 113: 1623-1635
MeSH Terms: Animals, Animals, Genetically Modified, Calcium, Calcium Signaling, Cell Membrane, Cytosol, Drosophila, Epithelial Cells, Lasers, Microscopy, Confocal, Voltage-Sensitive Dye Imaging, Wings, Animal, Wound Healing
Show Abstract · Added March 20, 2018
Epithelial wound healing is an evolutionarily conserved process that requires coordination across a field of cells. Studies in many organisms have shown that cytosolic calcium levels rise within a field of cells around the wound and spread to neighboring cells, within seconds of wounding. Although calcium is a known potent second messenger and master regulator of wound-healing programs, it is unknown what initiates the rise of cytosolic calcium across the wound field. Here we use laser ablation, a commonly used technique for the precision removal of cells or subcellular components, as a tool to investigate mechanisms of calcium entry upon wounding. Despite its precise ablation capabilities, we find that this technique damages cells outside the primary wound via a laser-induced cavitation bubble, which forms and collapses within microseconds of ablation. This cavitation bubble damages the plasma membranes of cells it contacts, tens of microns away from the wound, allowing direct calcium entry from extracellular fluid into damaged cells. Approximately 45 s after this rapid influx of calcium, we observe a second influx of calcium that spreads to neighboring cells beyond the footprint of cavitation. The occurrence of this second, delayed calcium expansion event is predicted by wound size, indicating that a separate mechanism of calcium entry exists, corresponding to cell loss at the primary wound. Our research demonstrates that the damage profile of laser ablation is more similar to a crush injury than the precision removal of individual cells. The generation of membrane microtears upon ablation is consistent with studies in the field of optoporation, which investigate ablation-induced cellular permeability. We conclude that multiple types of damage, including microtears and cell loss, result in multiple mechanisms of calcium influx around epithelial wounds.
Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca-Regulated Genes.
Stancill JS, Cartailler JP, Clayton HW, O'Connor JT, Dickerson MT, Dadi PK, Osipovich AB, Jacobson DA, Magnuson MA
(2017) Diabetes 66: 2175-2187
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Calcium, Calcium Signaling, Cell Adhesion, Cell Cycle Proteins, Cell Lineage, Cell Polarity, Gene Expression, Gene Expression Regulation, Insulin-Secreting Cells, KATP Channels, Mice, Pancreatic Polypeptide-Secreting Cells, S100 Calcium Binding Protein A6, S100 Calcium-Binding Protein A4, S100 Proteins, Sulfonylurea Receptors
Show Abstract · Added June 2, 2017
We used mice lacking , a key component of the β-cell K-channel, to analyze the effects of a sustained elevation in the intracellular Ca concentration ([Ca]) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified β-cells confirmed an increase in gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca signaling, the maintenance of β-cell identity, and cell adhesion. The expression of and , two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca] Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, , was confirmed to be directly controlled by Ca influx in β-cells. Interestingly, among the upregulated genes is , a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca] in islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca-regulated genes.
© 2017 by the American Diabetes Association.
4 Communities
4 Members
0 Resources
18 MeSH Terms
Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes.
Zurawski Z, Page B, Chicka MC, Brindley RL, Wells CA, Preininger AM, Hyde K, Gilbert JA, Cruz-Rodriguez O, Currie KPM, Chapman ER, Alford S, Hamm HE
(2017) J Biol Chem 292: 12165-12177
MeSH Terms: Animals, Binding, Competitive, Calcium Signaling, Cattle, Cell Line, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Humans, Lipid Bilayers, Liposomes, Membrane Fusion, Models, Molecular, Mutation, Nerve Tissue Proteins, Peptide Fragments, Protein Conformation, Protein Interaction Domains and Motifs, Protein Multimerization, Rats, Recombinant Fusion Proteins, Recombinant Proteins, Synaptosomal-Associated Protein 25, Synaptotagmin I, Syntaxin 1
Show Abstract · Added July 12, 2017
G-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gβγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gβγ subunits with the soluble -ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gβγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gβγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gβγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gβγ for SNARE-binding sites in lipid environments. Mutant Gβγ subunits that were previously shown to be more efficacious at inhibiting Ca-triggered exocytotic release than wild-type Gβγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gβγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gβ and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gβγ inhibited Ca/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gβγ-SNARE interaction and show that the target of Gβγ, downstream of VGCC, is the membrane-embedded SNARE complex.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
24 MeSH Terms
Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.
Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA
(2017) PLoS One 12: e0175069
MeSH Terms: Aged, Animals, Calcium Signaling, Diabetes Mellitus, Type 2, Female, Glucose, HEK293 Cells, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Membrane Potentials, Mice, Knockout, Osteopontin, Potassium, Potassium Channels, Tandem Pore Domain
Show Abstract · Added November 13, 2017
Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Ca1.2 Ca Channels at Excitatory Synapses.
Wang S, Stanika RI, Wang X, Hagen J, Kennedy MB, Obermair GJ, Colbran RJ, Lee A
(2017) J Neurosci 37: 4679-4691
MeSH Terms: Animals, Calcium Channels, L-Type, Calcium Signaling, Cerebral Cortex, Excitatory Postsynaptic Potentials, Ion Channel Gating, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurons, Protein Transport, Sialoglycoproteins, Signal Transduction, Synapses
Show Abstract · Added April 26, 2017
Voltage-gated Ca1.2 and Ca1.3 (L-type) Ca channels regulate neuronal excitability, synaptic plasticity, and learning and memory. Densin-180 (densin) is an excitatory synaptic protein that promotes Ca-dependent facilitation of voltage-gated Ca1.3 Ca channels in transfected cells. Mice lacking densin (densin KO) exhibit defects in synaptic plasticity, spatial memory, and increased anxiety-related behaviors-phenotypes that more closely match those in mice lacking Ca1.2 than Ca1.3. Therefore, we investigated the functional impact of densin on Ca1.2. We report that densin is an essential regulator of Ca1.2 in neurons, but has distinct modulatory effects compared with its regulation of Ca1.3. Densin binds to the N-terminal domain of Ca1.2, but not that of Ca1.3, and increases Ca1.2 currents in transfected cells and in neurons. In transfected cells, densin accelerates the forward trafficking of Ca1.2 channels without affecting their endocytosis. Consistent with a role for densin in increasing the number of postsynaptic Ca1.2 channels, overexpression of densin increases the clustering of Ca1.2 in dendrites of hippocampal neurons in culture. Compared with wild-type mice, the cell surface levels of Ca1.2 in the brain, as well as Ca1.2 current density and signaling to the nucleus, are reduced in neurons from densin KO mice. We conclude that densin is an essential regulator of neuronal Ca1 channels and ensures efficient Ca1.2 Ca signaling at excitatory synapses. The number and localization of voltage-gated Ca Ca channels are crucial determinants of neuronal excitability and synaptic transmission. We report that the protein densin-180 is highly enriched at excitatory synapses in the brain and enhances the cell surface trafficking and postsynaptic localization of Ca1.2 L-type Ca channels in neurons. This interaction promotes coupling of Ca1.2 channels to activity-dependent gene transcription. Our results reveal a mechanism that may contribute to the roles of Ca1.2 in regulating cognition and mood.
Copyright © 2017 the authors 0270-6474/17/374679-13$15.00/0.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts.
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth S, Gumina RJ, Sawyer DB, Galindo CL
(2017) J Mol Cell Cardiol 105: 59-69
MeSH Terms: Calcium, Calcium Signaling, Cell Line, Cell Proliferation, Cell Survival, Heart Ventricles, Humans, Intracellular Space, Myofibroblasts, Neuregulin-1, Paracrine Communication, Sarcoplasmic Reticulum, Signal Transduction
Show Abstract · Added December 27, 2017
Neuregulin-1β (NRG-1β) is critical for cardiac development and repair, and recombinant forms are currently being assessed as possible therapeutics for systolic heart failure. We previously demonstrated that recombinant NRG-1β reduces cardiac fibrosis in an animal model of cardiac remodeling and heart failure, suggesting that there may be direct effects on cardiac fibroblasts. Here we show that NRG-1β receptors (ErbB2, ErbB3, and ErbB4) are expressed in normal human cardiac ventricular (NHCV) fibroblast cell lines. Treatment of NHCV fibroblasts with recombinant NRG-1β induced activation of the AKT pathway, which was phosphoinositide 3-kinase (PI3K)-dependent. Moreover, the NRG-1β-induced PI3K/AKT signaling in these cells required phosphorylation of both ErbB2 and ErbB3 receptors at tyrosine (Tyr)1248 and Tyr1289 respectively. RNASeq analysis of NRG-1β-treated cardiac fibroblasts obtained from three different individuals revealed a global gene expression signature consistent with cell growth and survival. We confirmed enhanced cellular proliferation and viability in NHCV fibroblasts in response to NRG-1β, which was abrogated by PI3K, ErbB2, and ErbB3 inhibitors. NRG-1β also induced production and secretion of cytokines (interleukin-1α and interferon-γ) and pro-reparative factors (angiopoietin-2, brain-derived neurotrophic factor, and crypto-1), suggesting a role in cardiac repair through the activation of paracrine signaling.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms