Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 105

Publication Record

Connections

Neuronal L-Type Calcium Channel Signaling to the Nucleus Requires a Novel CaMKIIα-Shank3 Interaction.
Perfitt TL, Wang X, Dickerson MT, Stephenson JR, Nakagawa T, Jacobson DA, Colbran RJ
(2020) J Neurosci 40: 2000-2014
MeSH Terms: Animals, Calcium Channels, L-Type, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cell Nucleus, Gene Expression Regulation, Hippocampus, Mice, Mice, Inbred C57BL, Microfilament Proteins, Nerve Tissue Proteins, Neurons, Signal Transduction
Show Abstract · Added March 3, 2020
The activation of neuronal plasma membrane Ca channels stimulates many intracellular responses. Scaffolding proteins can preferentially couple specific Ca channels to distinct downstream outputs, such as increased gene expression, but the molecular mechanisms that underlie the exquisite specificity of these signaling pathways are incompletely understood. Here, we show that complexes containing CaMKII and Shank3, a postsynaptic scaffolding protein known to interact with L-type calcium channels (LTCCs), can be specifically coimmunoprecipitated from mouse forebrain extracts. Activated purified CaMKIIα also directly binds Shank3 between residues 829 and 1130. Mutation of Shank3 residues Arg-Arg-Lys to three alanines disrupts CaMKII binding and CaMKII association with Shank3 in heterologous cells. Our shRNA/rescue studies revealed that Shank3 binding to both CaMKII and LTCCs is important for increased phosphorylation of the nuclear CREB transcription factor and expression of c-Fos induced by depolarization of cultured hippocampal neurons. Thus, this novel CaMKII-Shank3 interaction is essential for the initiation of a specific long-range signal from LTCCs in the plasma membrane to the nucleus that is required for activity-dependent changes in neuronal gene expression during learning and memory. Precise neuronal expression of genes is essential for normal brain function. Proteins involved in signaling pathways that underlie activity-dependent gene expression, such as CaMKII, Shank3, and L-type calcium channels, are often mutated in multiple neuropsychiatric disorders. Shank3 and CaMKII were previously shown to bind L-type calcium channels, and we show here that Shank3 also binds to CaMKII. Our data show that each of these interactions is required for depolarization-induced phosphorylation of the CREB nuclear transcription factor, which stimulates the expression of c-Fos, a neuronal immediate early gene with key roles in synaptic plasticity, brain development, and behavior.
Copyright © 2020 the authors.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Small Molecule Inhibitor Screen Reveals Calcium Channel Signaling as a Mechanistic Mediator of TcdB-Induced Necrosis.
Farrow MA, Chumber NM, Bloch SC, King M, Moton-Melancon K, Shupe J, Washington MK, Spiller BW, Lacy DB
(2020) ACS Chem Biol 15: 1212-1221
MeSH Terms: Actin Cytoskeleton, Animals, Anti-Infective Agents, Bacterial Toxins, Calcium Channel Blockers, Calcium Channels, Calcium Signaling, Clostridioides difficile, Cytokines, Dihydropyridines, Dose-Response Relationship, Drug, Drug Evaluation, Preclinical, Glucosyltransferases, Humans, Kinetics, Mice, NADPH Oxidases, Necrosis, Reactive Oxygen Species, Virulence Factors
Show Abstract · Added March 24, 2020
is the leading cause of nosocomial diarrhea in the United States. The primary virulence factors are two homologous glucosyltransferase toxins, TcdA and TcdB, that inactivate host Rho-family GTPases. The glucosyltransferase activity has been linked to a "cytopathic" disruption of the actin cytoskeleton and contributes to the disruption of tight junctions and the production of pro-inflammatory cytokines. TcdB is also a potent cytotoxin that causes epithelium necrotic damage through an NADPH oxidase (NOX)-dependent mechanism. We conducted a small molecule screen to identify compounds that confer protection against TcdB-induced necrosis. We identified an enrichment of "hit compounds" with a dihydropyridine (DHP) core which led to the discovery of a key early stage calcium signal that serves as a mechanistic link between TcdB-induced NOX activation and reactive oxygen species (ROS) production. Disruption of TcdB-induced calcium signaling (with both DHP and non-DHP molecules) is sufficient to ablate ROS production and prevent subsequent necrosis in cells and in a mouse model of intoxication.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome.
Chavali NV, Kryshtal DO, Parikh SS, Wang L, Glazer AM, Blackwell DJ, Kroncke BM, Shoemaker MB, Knollmann BC
(2019) Heart Rhythm 16: 1686-1695
MeSH Terms: Action Potentials, Calcium Channels, L-Type, Child, Clustered Regularly Interspaced Short Palindromic Repeats, Female, Gene Editing, Genetic Testing, Genetic Variation, Humans, Induced Pluripotent Stem Cells, Long QT Syndrome, Pedigree, Phenotype
Show Abstract · Added March 4, 2020
BACKGROUND - Commercial genetic testing for long QT syndrome (LQTS) has rapidly expanded, but the inability to accurately predict whether a rare variant is pathogenic has limited its clinical benefit. Novel missense variants are routinely reported as variant of unknown significance (VUS) and cannot be used to screen family members at risk for sudden cardiac death. Better approaches to determine the pathogenicity of VUS are needed.
OBJECTIVE - The purpose of this study was to rapidly determine the pathogenicity of a CACNA1C variant reported by commercial genetic testing as a VUS using a patient-independent human induced pluripotent stem cell (hiPSC) model.
METHODS - Using CRISPR/Cas9 genome editing, CACNA1C-p.N639T was introduced into a previously established hiPSC from an unrelated healthy volunteer, thereby generating a patient-independent hiPSC model. Three independent heterozygous N639T hiPSC lines were generated and differentiated into cardiomyocytes (CM). Electrophysiological properties of N639T hiPSC-CM were compared to those of isogenic and population control hiPSC-CM by measuring the extracellular field potential (EFP) of 96-well hiPSC-CM monolayers and by patch clamp.
RESULTS - Significant EFP prolongation was observed only in optically stimulated but not in spontaneously beating N639T hiPSC-CM. Patch-clamp studies revealed that N639T prolonged the ventricular action potential by slowing voltage-dependent inactivation of Ca1.2 currents. Heterologous expression studies confirmed the effect of N639T on Ca1.2 inactivation.
CONCLUSION - The patient-independent hiPSC model enabled rapid generation of functional data to support reclassification of a CACNA1C VUS to likely pathogenic, thereby establishing a novel LQTS type 8 mutation. Furthermore, our results indicate the importance of controlling beating rates to evaluate the functional significance of LQTS VUS in high-throughput hiPSC-CM assays.
Copyright © 2019 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion.
Dickerson MT, Dadi PK, Altman MK, Verlage KR, Thorson AS, Jordan KL, Vierra NC, Amarnath G, Jacobson DA
(2019) Am J Physiol Endocrinol Metab 316: E646-E659
MeSH Terms: Alkanes, Animals, Apamin, Calcium, Calcium Channels, Calcium Channels, L-Type, Calcium Channels, P-Type, Calcium Channels, Q-Type, Endoplasmic Reticulum, Glucagon, Glucagon-Secreting Cells, Glucose, Mice, Mice, Transgenic, Patch-Clamp Techniques, Peptides, Potassium Channel Blockers, Potassium Channels, Calcium-Activated, Pyrazoles, Quinolinium Compounds
Show Abstract · Added February 13, 2019
Pancreatic α-cells exhibit oscillations in cytosolic Ca (Ca), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca oscillations have not been elucidated. As β-cell Ca oscillations are regulated in part by Ca-activated K (K) currents, this work investigated the role of K in α-cell Ca handling and GCG secretion. α-Cells displayed K currents that were dependent on Ca influx through L- and P/Q-type voltage-dependent Ca channels (VDCCs) as well as Ca released from endoplasmic reticulum stores. α-Cell K was decreased by small-conductance Ca-activated K (SK) channel inhibitors apamin and UCL 1684, large-conductance Ca-activated K (BK) channel inhibitor iberiotoxin (IbTx), and intermediate-conductance Ca-activated K (IK) channel inhibitor TRAM 34. Moreover, partial inhibition of α-cell K with apamin depolarized membrane potential ( V) (3.8 ± 0.7 mV) and reduced action potential (AP) amplitude (10.4 ± 1.9 mV). Although apamin transiently increased Ca influx into α-cells at low glucose (42.9 ± 10.6%), sustained SK (38.5 ± 10.4%) or BK channel inhibition (31.0 ± 11.7%) decreased α-cell Ca influx. Total α-cell Ca was similarly reduced (28.3 ± 11.1%) following prolonged treatment with high glucose, but it was not decreased further by SK or BK channel inhibition. Consistent with reduced α-cell Ca following prolonged K inhibition, apamin decreased GCG secretion from mouse (20.4 ± 4.2%) and human (27.7 ± 13.1%) islets at low glucose. These data demonstrate that K activation provides a hyperpolarizing influence on α-cell V that sustains Ca entry during hypoglycemic conditions, presumably by preventing voltage-dependent inactivation of P/Q-type VDCCs. Thus, when α-cell Ca is elevated during secretagogue stimulation, K activation helps to preserve GCG secretion.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension.
Dikalov S, Itani H, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, Blackwell T, Massion PP, Harrison DG, Dikalova A
(2019) Am J Physiol Heart Circ Physiol 316: H639-H646
MeSH Terms: Angiotensin II, Animals, Blood Pressure, Calcium Channels, Endothelium, Vascular, Hydrogen Peroxide, Hypertension, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mitochondria, Heart, Oxidative Stress, Superoxide Dismutase, TRPV Cation Channels, Tobacco Smoking, Vasoconstrictor Agents
Show Abstract · Added March 26, 2019
Tobacco smoking is a major risk factor for cardiovascular disease and hypertension. It is associated with the oxidative stress and induces metabolic reprogramming, altering mitochondrial function. We hypothesized that cigarette smoke induces cardiovascular mitochondrial oxidative stress, which contributes to endothelial dysfunction and hypertension. To test this hypothesis, we studied whether the scavenging of mitochondrial HO in transgenic mice expressing mitochondria-targeted catalase (mCAT) attenuates the development of cigarette smoke/angiotensin II-induced mitochondrial oxidative stress and hypertension compared with wild-type mice. Two weeks of exposure of wild-type mice with cigarette smoke increased systolic blood pressure by 17 mmHg, which was similar to the effect of a subpresssor dose of angiotensin II (0.2 mg·kg·day), leading to a moderate increase to the prehypertensive level. Cigarette smoke exposure and a low dose of angiotensin II cooperatively induced severe hypertension in wild-type mice, but the scavenging of mitochondrial HO in mCAT mice completely prevented the development of hypertension. Cigarette smoke and angiotensin II cooperatively induced oxidation of cardiolipin (a specific biomarker of mitochondrial oxidative stress) in wild-type mice, which was abolished in mCAT mice. Cigarette smoke and angiotensin II impaired endothelium-dependent relaxation and induced superoxide overproduction, which was diminished in mCAT mice. To mimic the tobacco smoke exposure, we used cigarette smoke condensate, which induced mitochondrial superoxide overproduction and reduced endothelial nitric oxide (a hallmark of endothelial dysfunction in hypertension). Western blot experiments indicated that tobacco smoke and angiotensin II reduce the mitochondrial deacetylase sirtuin-3 level and cause hyperacetylation of a key mitochondrial antioxidant, SOD2, which promotes mitochondrial oxidative stress. NEW & NOTEWORTHY This work demonstrates tobacco smoking-induced mitochondrial oxidative stress, which contributes to endothelial dysfunction and development of hypertension. We suggest that the targeting of mitochondrial oxidative stress can be beneficial for treatment of pathological conditions associated with tobacco smoking, such as endothelial dysfunction, hypertension, and cardiovascular diseases.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Molecular physiology and pathophysiology of stromal interaction molecules.
Nelson HA, Roe MW
(2018) Exp Biol Med (Maywood) 243: 451-472
MeSH Terms: Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Endoplasmic Reticulum, Humans, Mice, Neoplasm Proteins, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Ca release from the endoplasmic reticulum is an important component of Ca signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca from the endoplasmic reticulum is coupled to the activation of store-operated Ca entry into cells. Store-operated Ca entry provides Ca for replenishing depleted endoplasmic reticulum Ca stores and a Ca signal that regulates Ca-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca stores following G protein-coupled receptor activation with the induction of store-operated Ca entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca concentration within the endoplasmic reticulum lumen and activators of Ca release-activated Ca channels. Emerging evidence indicates that in addition to their role in Ca release-activated Ca channel gating and store-operated Ca entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion.
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, Nano R, Piemonti L, Rutter GA, Jacobson DA, Lavery GG, Hodson DJ
(2018) Diabetes 67: 278-290
MeSH Terms: 11-beta-Hydroxysteroid Dehydrogenase Type 1, Animals, Biomarkers, Calcium Channels, Calcium Signaling, Cell Differentiation, Corticosterone, Cortisone, Cyclic AMP, Glucocorticoids, Glucose, Humans, Hydrocortisone, Insulin, Insulin Secretion, Insulin-Secreting Cells, Kinetics, Mice, Inbred Strains, Mice, Knockout, Tissue Culture Techniques
Show Abstract · Added December 6, 2017
Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca channel function and Ca fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Amyloid Accumulation Drives Proteome-wide Alterations in Mouse Models of Alzheimer's Disease-like Pathology.
Savas JN, Wang YZ, DeNardo LA, Martinez-Bartolome S, McClatchy DB, Hark TJ, Shanks NF, Cozzolino KA, Lavallée-Adam M, Smukowski SN, Park SK, Kelly JW, Koo EH, Nakagawa T, Masliah E, Ghosh A, Yates JR
(2017) Cell Rep 21: 2614-2627
MeSH Terms: Alzheimer Disease, Amyloid beta-Peptides, Animals, Apolipoproteins E, Brain, Calcium Channels, Computational Biology, Female, Mass Spectrometry, Mice, Mice, Inbred C57BL, Proteome
Show Abstract · Added March 21, 2018
Amyloid beta (Aβ) peptides impair multiple cellular pathways and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled by this process is unknown. To identify protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at young and old ages. Our analysis revealed a robust increase in Apolipoprotein E (ApoE) levels in nearly all brain regions with increased Aβ levels. Taken together with prior findings on ApoE driving Aβ accumulation, this analysis points to a pathological dysregulation of the ApoE-Aβ axis. We also found dysregulation of protein networks involved in excitatory synaptic transmission. Analysis of the AMPA receptor (AMPAR) complex revealed specific loss of TARPγ-2, a key AMPAR-trafficking protein. Expression of TARPγ-2 in hAPP transgenic mice restored AMPA currents. This proteomic database represents a resource for the identification of protein alterations responsible for AD.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
A novel mechanism for Ca/calmodulin-dependent protein kinase II targeting to L-type Ca channels that initiates long-range signaling to the nucleus.
Wang X, Marks CR, Perfitt TL, Nakagawa T, Lee A, Jacobson DA, Colbran RJ
(2017) J Biol Chem 292: 17324-17336
MeSH Terms: Animals, Calcium Channels, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Cell Nucleus, Female, Hippocampus, Learning, Memory, Neurons, Protein Domains, Rats, Rats, Sprague-Dawley, Signal Transduction
Show Abstract · Added November 13, 2017
Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca-sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca/calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of Ca1 LTCC α1 subunits that is not conserved in Ca2 or Ca3 voltage-gated Ca channel subunits. Mutations in the Ca1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin.
Hawken NM, Zaika EI, Nakagawa T
(2017) J Physiol 595: 6517-6539
MeSH Terms: Calcium Channels, Cell Line, Cell Membrane, Humans, Ion Channel Gating, Mutation, Protein Domains, Receptors, AMPA
Show Abstract · Added March 21, 2018
KEY POINTS - The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex.
ABSTRACT - During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.
© 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
0 Communities
1 Members
0 Resources
8 MeSH Terms