Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 64

Publication Record

Connections

The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System.
Hammarlund M, Hobert O, Miller DM, Sestan N
(2018) Neuron 99: 430-433
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Chromosome Mapping, Gene Expression Profiling, National Institute of Neurological Disorders and Stroke (U.S.), Nervous System, Nervous System Physiological Phenomena, United States
Show Abstract · Added March 26, 2019
Differential gene expression defines individual neuron types and determines how each contributes to circuit physiology and responds to injury and disease. The C. elegans Neuronal Gene Expression Map & Network (CeNGEN) will establish a comprehensive gene expression atlas of an entire nervous system at single-neuron resolution.
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
9 MeSH Terms
A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching.
Zou W, Dong X, Broederdorf TR, Shen A, Kramer DA, Shi R, Liang X, Miller DM, Xiang YK, Yasuda R, Chen B, Shen K
(2018) Dev Cell 45: 362-375.e3
MeSH Terms: Actin Cytoskeleton, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Cell Membrane, Dendrites, Membrane Proteins, Morphogenesis, Neurogenesis, Sensory Receptor Cells, Signal Transduction
Show Abstract · Added March 26, 2019
Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron.
O'Brien BMJ, Palumbos SD, Novakovic M, Shang X, Sundararajan L, Miller DM
(2017) Dev Biol 432: 248-257
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, DNA-Binding Proteins, Dendrites, Gene Expression Regulation, LIM-Homeodomain Proteins, Membrane Proteins, Nociceptors, Regulatory Elements, Transcriptional, Sensory Receptor Cells, Transcription Factors, Zinc Fingers
Show Abstract · Added March 26, 2019
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism.
Bermingham DP, Hardaway JA, Refai O, Marks CR, Snider SL, Sturgeon SM, Spencer WC, Colbran RJ, Miller DM, Blakely RD
(2017) J Neurosci 37: 9288-9304
MeSH Terms: Animals, Animals, Genetically Modified, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Cells, Cultured, Dopamine, Dopamine Plasma Membrane Transport Proteins, Extracellular Signal-Regulated MAP Kinases, Gene Expression Regulation, Enzymologic, Neurons, rho-Associated Kinases
Show Abstract · Added March 21, 2018
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly , remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function mutations. Here, we report the identity of , which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide and evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function. Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly Using a forward genetic screen in the nematode , we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide and evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.
Copyright © 2017 the authors 0270-6474/17/379288-17$15.00/0.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7.
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ
(2016) Aging (Albany NY) 8: 1759-80
MeSH Terms: Aging, Animals, Animals, Genetically Modified, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Lipid Peroxidation, Longevity, Proto-Oncogene Proteins c-ets, Sirtuins
Show Abstract · Added September 16, 2016
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
0 Communities
2 Members
0 Resources
9 MeSH Terms
The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons.
Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM
(2016) Elife 5:
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, GABAergic Neurons, Gene Expression Regulation, Ion Channels, Neuronal Plasticity
Show Abstract · Added March 26, 2019
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons.
0 Communities
1 Members
0 Resources
MeSH Terms
Acute blockade of the Caenorhabditis elegans dopamine transporter DAT-1 by the mammalian norepinephrine transporter inhibitor nisoxetine reveals the influence of genetic modifications of dopamine signaling in vivo.
Bermingham DP, Hardaway JA, Snarrenberg CL, Robinson SB, Folkes OM, Salimando GJ, Jinnah H, Blakely RD
(2016) Neurochem Int 98: 122-8
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Fluoxetine, Gene Deletion, Mutation, Norepinephrine Plasma Membrane Transport Proteins, Paralysis, Plasmids, Signal Transduction, Swimming
Show Abstract · Added February 15, 2016
Modulation of neurotransmission by the catecholamine dopamine (DA) is conserved across phylogeny. In the nematode Caenorhabditis elegans, excess DA signaling triggers Swimming-Induced Paralysis (Swip), a phenotype first described in animals with loss of function mutations in the presynaptic DA transporter (dat-1). Swip has proven to be a phenotype suitable for the identification of novel dat-1 mutations as well as the identification of novel genes that impact DA signaling. Pharmacological manipulations can also induce Swip, though the reagents employed to date lack specificity and potency, limiting their use in evaluation of dat-1 expression and function. Our lab previously established the mammalian norepinephrine transporter (NET) inhibitor nisoxetine to be a potent antagonist of DA uptake conferred by DAT-1 following heterologous expression. Here we demonstrate the ability of low (μM) concentrations of nisoxetine to trigger Swip within minutes of incubation, with paralysis dependent on DA release and signaling, and non-additive with Swip triggered by dat-1 deletion. Using nisoxetine in combination with genetic mutations that impact DA release, we further demonstrate the utility of the drug for demonstrating contributions of presynaptic DA receptors and ion channels to Swip. Together, these findings reveal nisoxetine as a powerful reagent for monitoring multiple dimensions of DA signaling in vivo, thus providing a new resource that can be used to evaluate contributions of dat-1 and other genes linked to DA signaling without the potential for compensations that attend constitutive genetic mutations.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Transcriptional Control of Synaptic Remodeling through Regulated Expression of an Immunoglobulin Superfamily Protein.
He S, Philbrook A, McWhirter R, Gabel CV, Taub DG, Carter MH, Hanna IM, Francis MM, Miller DM
(2015) Curr Biol 25: 2541-8
MeSH Terms: Acetylcholine, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, GABAergic Neurons, Gene Expression Regulation, Immunoglobulins, Motor Neurons, Nerve Tissue Proteins, Receptors, Cholinergic, Synapses, Transcription Factors
Show Abstract · Added March 26, 2019
Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in C. elegans that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and postsynaptic components. In newly born larvae, DDs receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling.
Hardaway JA, Sturgeon SM, Snarrenberg CL, Li Z, Xu XZ, Bermingham DP, Odiase P, Spencer WC, Miller DM, Carvelli L, Hardie SL, Blakely RD
(2015) J Neurosci 35: 9409-23
MeSH Terms: Animals, Animals, Genetically Modified, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Dopamine, Dopamine Plasma Membrane Transport Proteins, Glutamic Acid, Microscopy, Confocal, Motor Activity, Nerve Tissue Proteins, Neuroglia, Neurons, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction
Show Abstract · Added September 28, 2015
Glial cells play a critical role in shaping neuronal development, structure, and function. In a screen for Caenorhabditis elegans mutants that display dopamine (DA)-dependent, Swimming-Induced Paralysis (Swip), we identified a novel gene, swip-10, the expression of which in glia is required to support normal swimming behavior. swip-10 mutants display reduced locomotion rates on plates, consistent with our findings of elevated rates of presynaptic DA vesicle fusion using fluorescence recovery after photobleaching. In addition, swip-10 mutants exhibit elevated DA neuron excitability upon contact with food, as detected by in vivo Ca(2+) monitoring, that can be rescued by glial expression of swip-10. Mammalian glia exert powerful control of neuronal excitability via transporter-dependent buffering of extracellular glutamate (Glu). Consistent with this idea, swip-10 paralysis was blunted in mutants deficient in either vesicular Glu release or Glu receptor expression and could be phenocopied by mutations that disrupt the function of plasma membrane Glu transporters, most noticeably glt-1, the ortholog of mammalian astrocytic GLT1 (EAAT2). swip-10 encodes a protein containing a highly conserved metallo-β-lactamase domain, within which our swip-10 mutations are located and where engineered mutations disrupt Swip rescue. Sequence alignments identify the CNS-expressed gene MBLAC1 as a putative mammalian ortholog. Together, our studies provide evidence of a novel pathway in glial cells regulated by swip-10 that limits DA neuron excitability, DA secretion, and DA-dependent behaviors through modulation of Glu signaling.
Copyright © 2015 the authors 0270-6474/15/359409-15$15.00/0.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans.
Chakraborty S, Chen P, Bornhorst J, Schwerdtle T, Schumacher F, Kleuser B, Bowman AB, Aschner M
(2015) Metallomics 7: 847-56
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Cation Transport Proteins, Down-Regulation, Gene Deletion, Homeostasis, Manganese, RNA, Messenger, Ubiquitin-Protein Ligases
Show Abstract · Added February 15, 2016
Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology.
0 Communities
1 Members
0 Resources
10 MeSH Terms